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Abstract 

Currently most GISs represent natural phenomena by crisp spatial objects. In fact many 
natural phenomena have fuzzy characteristics. The representation of these objects in the 
crisp form greatly simplifies the processing of spatial data. However, this simplification 
cannot describe these natural phenomena precisely, and it will lead to loss of 
information in these objects. In order to describe natural phenomena more precisely, the 
fuzziness in these natural phenomena should be considered and represented in a GIS. 
This will allow the derivation of better results and a better understanding of the real 
world to be achieved.  
 
The central topic of this thesis focuses on the accommodation of fuzzy spatial objects in 
a GIS. Several issues are discussed theoretically and practically, including the definition 
of fuzzy spatial objects, the topological relations between them, the modeling of fuzzy 
spatial objects, the generation of fuzzy spatial objects and the utilization of fuzzy spatial 
objects for land cover changes.  
 
A formal definition of crisp spatial objects has been derived based on the highly abstract 
mathematics such as set theory and topology. Fuzzy set theory and fuzzy topology are 
the ideal tools for defining fuzzy spatial objects theoretically, since fuzzy set theory is a 
natural extension of classical set theory and fuzzy topology is built based on fuzzy sets. 
However, owing to the extension, several properties holding between crisp sets do not 
hold for fuzzy sets.  
 
The key issue of a fuzzy spatial object is its boundary. Three definitions of fuzzy 
boundary are revisited and one is selected for the definition of fuzzy spatial objects. 
Besides the fuzzy boundary, several notions such as the core, the internal, the fringe, the 
frontier, the internal fringe and the outer of a fuzzy set are defined in fuzzy topological 
space. The relationships between these notions and the interior, the boundary and the 
exterior of a fuzzy set are revealed. In general, the core is the crisp subset of the interior, 
and the fringe is a kind of boundary but shows a finer structure than the boundary of a 
fuzzy set in fuzzy topological space. These notions are all proven to be topological 
properties of a fuzzy topological space.  
 
The definition of a simple fuzzy region is derived based on the above topological 
properties. It is discussed twice in the thesis. Firstly, the definition of a simple fuzzy 
region is given in a special fuzzy topological space called crisp fuzzy topological space, 
since most topological properties of a fuzzy set in the fuzzy topological space are the 
same as those in crisp topological space. A formal definition of a simple fuzzy region is 
proposed based on the discussion of the topological properties, besides the interior, the 
boundary and the exterior, of a fuzzy set in the general fuzzy topological space. A crisp 
simple region is a special form of a simple fuzzy region.  
 
One of the fundamental properties between fuzzy spatial objects is the topological 
relations. This topic is intensively discussed in the thesis. The problem of the 



 

 
 
 

9-intersection approach for identifying topological relations between fuzzy spatial 
objects is revealed. In order to derive the topological relations between fuzzy spatial 
objects, the 9-intersection approach is updated into the 3*3-intersection approach in the 
crisp fuzzy topological space. Furthermore, the 4*4-intersection matrix is built up by 
using the topological properties of fuzzy sets, and the 5*5-intersection matrix can be 
built up based on a certain condition in crisp fuzzy topological space. These matrices 
are then updated in the general fuzzy topological space, based on topological properties, 
other than the interior, the boundary and the exterior, of two fuzzy sets. Two 
3*3-intersection and one 4*4-intersection matrices are introduced in the general fuzzy 
topological space. The topological relations between simple fuzzy regions can be 
identified based on the topological invariants in the intersections of the matrices. Using 
the empty/non-empty topological invariants in the intersections, 44 and 152 relations 
are derived between two simple fuzzy regions.  
 
The modeling of fuzzy spatial objects should be done not only for simple fuzzy regions, 
but also for fuzzy lines and fuzzy points. In order to model fuzzy lines and fuzzy points 
and the topological relations between fuzzy spatial objects, a fuzzy cell is proposed and 
a fuzzy cell complex can be constructed from fuzzy cells. A fuzzy region, a fuzzy line 
and a fuzzy point are then defined according to this structure. The relations between 
these fuzzy spatial objects are identified. The fuzzy cell complex structure constitutes a 
theoretic framework, since it can easily model the fuzzy spatial objects.  
 
After proposing the theoretic framework for fuzzy spatial object modeling, the thesis 
addresses several practical issues on applying fuzzy spatial objects. The first issue is 
how to generate fuzzy spatial objects. A composite method is proposed for the 
generation of fuzzy land cover objects. It involves several steps, from designing 
membership functions to classification and refining the membership values of fuzzy 
land cover objects.  
 
Another practical issue is how to retrieve fuzzy spatial objects, particularly on the basis 
of topological relations. In traditional GIS, the query operators are defined based on the 
relatively small number of topological relations. However, there are many topological 
relations between fuzzy spatial objects. In order to query fuzzy spatial objects, the query 
operators are proposed and formalized based on the common-sense operators in 
traditional GIS. The 44 or 152 topological relations are grouped into these operators by 
four different methods. These methods constitute a relatively complete covering for 
querying fuzzy spatial objects so as to meet the different application requirements. 
 
The third practical issue is how to use fuzzy spatial objects in real applications. Since 
the dynamics of land covers is a very important topic in China, the focus lies on 
calculating changes of land covers. Sanya city, located in south China, is selected as the 
test area. A fuzzy reasoning method is proposed for calculating land cover changes. It 
shows that, with fuzzy representation, not only can a better result be achieved for the 
land cover changes, but also the details of changes can be revealed.  
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Chapter One 

Introduction 

 
 
 
 

1.1 Background 

1.1.1 Uncertainty and related theories 

In the Merriam-Webster Dictionary, uncertainty is explained as something uncertain: 
indefinite, indeterminate; not certain to occur; not reliable; not known beyond doubt; 
not having certain knowledge; not clearly identified or defined; not constant. Almost all 
the information that we possess about the real world is uncertain, incomplete and 
imprecise. From the general point of view, uncertainty may include the following 
aspects (Worboys 1998): 

 Inaccuracy and error: deviations from true values; 
 Vagueness: imprecision in concepts used to describe the information; 
 Incompleteness: lack of relevant information; 
 Inconsistency: conflicts arising from the information; 
 Imprecision: limitation on the granularity or resolution at which the 

observation is made or the information is represented. 
 
Error, as one aspect of the uncertainties, represents bias from true values. The error is 
1% if 99 out of 100 events are the true value, which is a singleton value normally. 
Vagueness can be the inherent nature of an object, or result from imprecise knowledge 
or from the methods of observation. Incompleteness is caused by lack of relevant 
information, for example, lack of sufficient information to determine the location of the 
center of a city. Inconsistency expresses paradox in some events. Imprecision usually 
arises because of limitations on the granularity or resolution at which the observation is 
made. For example, a Digital Elevation Model (DEM) with a resolution of 100 m will 
mean the loss of detail within 100 m.  
  
Error has been tackled using probability theory ever since the 17th century. Bayesian 
theory is a classical model for handling errors in events. In order to deal with vagueness, 
Zadeh proposed the famous fuzzy set theory in 1965. The fuzzy set and fuzzy logic are 
the most powerful tool for solving these fuzzy problems. Since then, many theories have 
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been proposed for solving different aspects of the uncertainty problems by addressing 
different facets. Possibility theory, introduced by Zadeh (1978), in connection with 
fuzzy set theory, allows a reasoning to be carried out on imprecise or vague knowledge, 
making it possible to deal with uncertainties in this knowledge. The Dempster-Shafer 
evidence theory (Shafer 1976) is like the Bayesian probability theory. It relies on 
degrees of belief to represent imprecision in events. Unlike the Bayesian theory, 
however, it permits us to assign degrees of plausibility to subsets of events. In Bayesian 
theory, we construct a probability distribution over all individual singleton events, but in 
evidence theory a distribution is constructed over all subsets of events. Rough set theory, 
introduced by Pawlak (1991), represents the uncertainty of an event by the 
approximation of sets using a collection of sets. It is widely adopted in the field of data 
mining since it is powerful for reasoning based on incomplete information. Worboys 
(1998) also infers about the integration of imprecision in data in terms of spatial 
resolution.   
 

1.1.2 Fuzzy sets and fuzzy spatial objects 

While different theories are proposed for solving different problems on uncertainties, 
fuzzy set theory is emphasized for representing spatial objects. The idea of fuzzy set is 
to express the facts in human knowledge, such as:  

(1) Partial membership to a class (such as “almost true”); 
(2) Categories with poorly defined boundaries (“young” or “far”);   
(3) Gradual change from one situation to another (transition from “warm” 

to “hot” as the temperature changes); 
(4) Use of approximate values (“about 12 years”). 

 
Zadeh (1965) generalized a fuzzy set from classical set theory by allowing intermediate 
situations between the whole and nothing. For a fuzzy (sub)set, a membership function 
is defined to describe the degree of membership of an element to a class. The 
membership value ranges from 0 to 1, where 0 shows that the element does not belong 
to a class, 1 means “belong”, and other values indicate the degree of membership to a 
class. The difference between fuzzy set and crisp set lies in the concept that the 
membership function has replaced the characteristic function of a set. A fuzzy set can 
represent the elements in a class with a degree of membership to that class. Fuzzy set 
theory has been built as a natural extension of classic set theory. It provides a means of 
representing and handling the vagueness of an object and imperfectly described 
knowledge.   
 
When we investigate and analyze natural phenomena, we always describe them by some 
terminologies of human knowledge. Many terminologies express a general 
characteristic of an object, i.e., they possess a definite connotation and cover a large 
extent of certain phenomena,  such as “young” and “old”, “large” and “small”. Many 
notions of spatial features fall into this category, for instance, urban and rural, physical 
geographic region, forest and grassland. The phenomena corresponding to these notions 
are distributed continuously in space and have a characteristic in common – they have 
indeterminate boundaries. In the discussion of spatial objects (Freksa and Barkowsky 
1996, Clementini and Di Felice 1996, Hadzilacos 1996, Lagacherie et al. 1996), fuzzy 
spatial objects are those with indeterminate boundaries. The indeterminate boundary of 



Introduction 

 3 

a spatial object refers to the fact that there is some degree of membership of points 
belonging to that spatial object. According to the idea and explanation of fuzzy sets, 
fuzzy set theory is an ideal tool for handling these natural phenomena because of its 
capability to represent the indeterminate boundaries of these objects.    
 
In GIS, a spatial object is usually subdivided into three parts: spatial, non-spatial 
(mainly referred to as attributes) and temporal. Fuzziness may exist in all of these 
aspects. We can distinguish the following fuzziness of spatial objects: fuzziness in 
object class, fuzziness in object attributes, fuzziness in location and fuzziness in time.  
 
The fuzziness in object class can be interpreted as a category problem. It is usually 
caused by ambiguous definitions. For example, grassland can be defined as “an area 
most of which is covered by grass”, in which the term “most” is not clear. The 
vagueness existing in spatial objects is the key factor that raises ambiguous definitions. 
Attribute fuzziness can be regarded as a category fuzziness if taking attributes as 
attribute classes. Location fuzziness rises (1) we know the precise locations of the 
geographic objects, including the possibly gradual transitions between them, but we are 
uncertain how to classify them. This fuzziness can be regarded as class fuzziness. 
Location fuzziness can also be because of (2) spatially imprecise definitions. Coarse 
resolution will cause the imprecision of information representation. Even if we can 
define category classes clearly, it is impossible to classify them crisply since they are 
imprecisely represented. Temporal fuzziness may be incomplete temporal information, 
such as not knowing exactly when something happens.  
 

1.1.3 Fuzziness in land cover 

Land use and land cover (LULC), most of which is obtained from the classification 
results of satellite images or air-photos, may be a good example of a fuzzy spatial object. 
Since many researchers consider that image classification usually derives land cover 
and that land use denotes the real use of land (for example, grassland and buildings 
classified from satellite images can be regarded as land cover but the real land use is 
garden), the term “land cover” will be adopted in this thesis. After classification each 
pixel in the image is assigned to a particular land cover type. Any pixel belongs to one 
and only one type and the whole area of that pixel is assigned to that type. In short, the 
decision is a Boolean assignment of each pixel to a class (Fisher 1996). The normal 
procedure of a classification is to develop a set of training areas that represent each of 
the land cover types, and then to use statistical methods from those areas as a base for 
some numerical procedure to attempt to assign each pixel to a type. A number of 
methods can be adopted, but some variants of the maximum likelihood method are 
perhaps the most widely used classifiers. The methods determine the probability of a 
pixel belonging to all classes and include a decision rule that saves only the name of the 
most likely class for the pixel. One variant includes a chi-square test to determine the 
confidence with which a pixel can be classified, and this can be used to leave those 
pixels unclassified where classification is in doubt.  
 
However, this is always an approximation of reality. In fact, the landscape is not made 
up of little rectangular plots of uniform land use that suddenly change their size to 
match resolutions such as 10m, 20m or 30m. At some scales, all pixels actually contain 
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a number of different contributing land use types (Figure 1.1). The significance of the 
contribution is clearly dependent on the sensor resolution. It would therefore be more 
correct to say that a pixel has some levels of possibility of belonging to certain land 
cover types. 
 
 
 
 
 
 
 
 
 
 
                         
 

Figure 1.1 Fuzziness in pixels 
 
Furthermore, in general land cover is continuously distributed in nature, and there is 
seldom a clear boundary between different land covers. For instance, it quite often 
happens that there are no clear boundaries between shrub and grassland (Figure 1.2). In 
other words, the artificial crisp division between these land covers is less accurate than 
the indeterminate boundary in terms of representing of land cover objects. Coarse 
resolutions just reinforce this characteristic of land cover. Therefore, the fuzziness of 
land cover types is due to the inherent continuity of nature, which leads to the imprecise 
definitions of land covers and sensor resolutions. It is more reasonable to describe the 
pixel in terms of membership value. A land cover object is actually a fuzzy spatial 
object.  
 
 
 
 
 
   
 
 
 
 
 
 
 
 

Figure 1.2 Fuzziness of land covers 
 

1.1.4 Importance of fuzzy spatial objects 

Fuzzy spatial objects have become more and more important in GIS applications. When 
spatial phenomena are generalized by the crisp form, a lot of quantitative information is 

Enlarge 
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neglected. As Burrough (1996) pointed out, if soil types are represented as crisp objects 
with crisp boundaries, the transition from one type of soil to another is totally lost, 
which cannot reflect the reality. In reality, some concepts should not be considered as 
crisp objects at all (for example, mountains, oceans and the Yangtze River delta) since 
their boundaries are totally indeterminate. As we mentioned before, land cover is also a 
fuzzy spatial object. And land cover always changes gradually unless there is an abrupt 
change in nature. For example, forest will slowly degrade into bush when the natural 
environment degenerates. During the process of change, the land cover normally 
changes from forest, to mixed forest and bush, and finally to bush. If we crisply classify 
TM images into crisp land cover types, then the change from forest to bush appears to 
have happened suddenly. Mixed information cannot be reflected by crisp land cover 
objects.   
 

1.1.5 Monitoring land cover changes in China 

Land resource poses one of the biggest problems in China. Because of the growth in 
population and the economy, the contradiction between land resources and humans is 
becoming more and more severe. On the one hand, more arable land is necessary to feed 
more people. On the other hand, the growth of the economy accelerates urbanization, 
which always results in a decrease in cultivated land. According to the Chinese 21st 
Agenda, the cultivated land accounted for 13,248 million ha in 1985 but was down to 
13,003 million ha in 1996, based on the results of a detailed land use investigation. 
During these 11 years, 244,000 ha of cultivated land were lost each year. Because of the 
severity of the problem, at the beginning of ‘80s, the Chinese government proposed a 
long-term strategy called “Treasuring and using reasonably every inch of land”. During 
these years, the problems such as the haphazard use of land and illegal land claims 
happened frequently. Now the Chinese government is practicing the strictest land 
management policy in the world. The core of the policy is the ruling that all proposed 
construction involving more than 0.2 ha must first be approved by the central 
government. Furthermore the Land Resource Ministry has proposed a practical policy to 
maintain cultivated land in dynamic balance. When cultivated land is used for other 
purposes, an equivalent amount of land for cultivation should be retrieved from other 
types of land.   
  
To reach this goal, in 1999 China began a large-scale investigation project on land use 
and land cover change. The main purpose of the investigation is to monitor and 
understand LULC changes all over the country. In 2000, 87 cities were monitored using 
TM images and SPOT satellite images. The land cover is classified into eight categories, 
which can be subdivided into 55 sub-categories. The eight categories are cultivated land, 
water area, forest, orchard, industrial land, transportation land, pasture and unused land. 
In the project, land cover change is identified by using bi-temporal images and then 
verified by air-photos or by fieldwork. The identification of changes from satellite 
images was done manually. As a consequence many skilled people were involved in 
identifying the changes. The land use change analysis focuses on changes in the eight 
categories. GIS is utilized as a conventional tool to summarize the changes in land use 
types and sizes. It has been estimated that the project will last around 10 years. 
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1.2 Problem statement 

1.2.1 Research motivation 

The research motivation has been generalized from the practical problems. The goal of 
the above project is to investigate land use and land cover changes in China so that the 
government can introduce the correct land policies to achieve the dynamic balance of 
cultivated land. The common procedures for detecting change are as follows: obtain 
up-to-date TM or SPOT images and collect old TM or SPOT images; classify them 
crisply into several land use and land cover classes; compare the differences between 
two classified results by subtraction; and then interpret the differences manually. The 
procedure is outlined in Figure 1.3. Because of classification errors, considerable 
manual interpretation and fieldwork are needed to decide whether there has been a real 
change or not.  
 
However, this process produces some errors when the change is not obvious, for 
example, there is a change that bush slowly degenerates into grassland. This procedure 
will report the change when there are these two classes in some areas. Actually in many 
cases the reality is that the number of trees is decreasing and the amount of grass is 
increasing. The change from one class to another is not so abrupt. There is only a degree 
of change from bush to grass. Therefore it is better for land use and land cover objects 
to be modeled as fuzzy spatial objects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Procedures for detecting land cover changes in the project  
“Monitoring land cover changes of China” 

Up-to-date TM/Spot Old TM/Spot Images 

Land use and land cover Land use and land cover 

Classification Classification 

Subtraction 

Land use and land cover change

Verification 
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1.2.2 Formal definition of spatial objects 

The premise of data modeling is that the concepts of all objects should be clearly 
defined. When we start to model the objects with fuzzy characteristics, the first problem 
is how to define fuzzy spatial objects for GIS applications.  
 
Crisp spatial objects have been well researched and formally defined in GIS. Point, line 
and polygon are three primitives in GIS. The method of defining a crisp point, line and 
polygon belongs to the field of geometry. The problems have been abstracted into 
topology theory. Intuitively speaking, topology deals with continuous deformations of 
objects. The most primitive concepts are open set and closed set, neighborhood, 
connectedness and so on (these will be introduced in Chapter 2). Crisp point, line and 
polygon have been formally defined in the crisp topological space. For example, a 
simple crisp region has been defined as a regular closed set whose interior is connected 
in the connected (crisp) topological space (Egenhofer and Franzosa 1991). Intuitively, 
the closure can be regarded as a closed disk; the interior is a disk without the boundary; 
and the boundary is the difference between the closure and its interior (Figure 1.4).  
 
 
 
 
 
 

Figure 1.4 Closure, interior and boundary of a closed disk 
 
A crisp spatial object is of course a crisp set, which has a characteristic function for its 
elements. The value of a characteristic function is either 1 or 0. The boundary of a crisp 
spatial object is also crisp. A piece of grassland can be represented by a regular closed 
set whose characteristic value is equal to 1 for its elements.  
 
In order to handle fuzzy spatial objects, a formal definition of fuzzy point, fuzzy line 
and fuzzy region seems necessary in GIS. The problem is what a fuzzy point should 
look like. Assume a fuzzy object A whose membership function is as follows (Figure 
1.5): 
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Figure 1.5 A fuzzy spatial object 

 
The core of the object is a point, and the outer boundary is a line where all membership 
values of the line are zero. Is it a fuzzy point, a fuzzy region, or something else?   
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1.2.3 Topological relations 

Another problem in modeling fuzzy spatial objects is the topological relations between 
fuzzy spatial objects. It is one of the most fundamental properties between spatial 
objects, since it can answer questions such as “who is my neighbor?”  
 
The topological relations have been formally identified in the crisp topological space 
between crisp spatial objects. For example, Egenhofer and Franzosa (1991) and 
Egenhofer and Herring (1990a, 1990b) have introduced the 4-intersection and 
9-intersection approaches in connected topological space by using the interiors, 
boundaries and exteriors between two crisp subsets. Eight relations have been identified 
between two simple regions in the two-dimensional Euclidean space 2R  (Figure 1.6).  
 
 
Disjoint Contains Inside Equal Meet Covers CoveredBy Overlap 
 
 

       

 
Figure 1.6 Eight topological relations between two simple regions in 2R  

 
It is not clear what the topological relation is between two fuzzy spatial objects? For 
example, there are two fuzzy spatial objects. What is the topological relation between 
them? And how can it be identified (Figure 1.7)?   
 
 
 
 
 

Figure 1.7 Two fuzzy spatial objects 
 

1.2.4 Modeling spatial objects 

It is well known now that GIS is a tool that can store, retrieve, analyze and display the 
information related to spatial data. The advantage of GIS lies in its powerful ability to 
analyze spatial objects. Spatial overlay and buffering, as well as conventional statistical 
analysis, can be easily done in almost any kind of GIS software package. GIS can be 
used not only in the traditional realms such as geography, geology, environment and 
natural resource management, but also in other fields where spatial data exist, such as 
medical science and social economics. All applications with spatial distribution can 
adopt GIS as a tool for analyzing their data. To date, GIS has been developed to such an 
extent that it reaches almost all corners of our society. 
 

1.2.4.1 Conventional data models 

The core of GIS is its data model. Two diametrically opposed geographic data models 
are nowadays available for encapsulating the aspects of interest of spatial phenomena. 

A B 

BA 
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These are the object-based model and the field-based model, according to Worboys 
(1995). In the object-based model (also called the feature-based model or vector-based 
model), natural entities or objects are represented by crisply defined primitives: points, 
lines and polygons. 
 
Figure 1.8(II) depicts a simple vector data model for representing the geometric parts of 
points, lines and polygons, which are primitives of the model (Figure 1.8(I)). In the 
model, lines link a series of exactly known points, and polygons are bounded by exactly 
defined lines. Topological relations between these objects can be formalized in a cell 
complex structure based on algebraic topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8 Vector data models for crisp spatial objects 
I: Primitives, II: Vector data model 

 
While the object-based model regards spatial data as point, line and polygon objects, the 
field-based model treats spatial data as a collection of spatial distributions, where each 
distribution may be formulated as a mathematical function from a spatial framework to 
an attribute domain. In practice, these attributes are often discretized to a grid at a given 
level of resolution. In this model the boundary of different objects is not formed. Figure 
1.9(II) shows a common raster data model where the grid is represented by fixed-sized 
pixels. The topological relations are imbedded in the attribute representation and there is 
no explicit expression for the topological relations between each other.  
 
These two models are the extreme abstractions of reality that are attractive for their 
logical consistency and their ease of handling using conventional reasoning and 
mathematics (Worboys 1995). The object model in its simplest form has been 
implemented using a relational database structure for the attributes. For the geometry 
and topological relations, there are well-designed data structures in GIS software. The 
continuous data in the field-based model can be handled in a purely relational database 
structure once it has been discretized to a regular grid. These models are nowadays 
extensively used in GIS. Figure 1.9 shows how to represent land cover objects by these 
two models. 
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Figure 1.9 Two models for representing land cover objects 
I: Vector data model, II: Raster data model 

 
Figure 1.8 shows both models can represent crisp spatial objects. The advantage of the 
object data model is that the topological relations can be expressed explicitly; however, 
it lacks the ability to handle the continuity of objects. In Figure 1.9(I), the topological 
relations between polygons and lines can be expressed by A: 1, 2, 0, 4 (0 means that 4 is 
a hole of A); B: 2, 3; C: 4. The advantage of the raster data model lies in its capability to 
model the continuity of spatial objects; however, it lacks a definite form for expressing 
boundaries, since it implies planar coordinates and adopts only the attribute domain in 
the representation.  
 

1.2.4.2 Modeling fuzzy spatial objects 

With the extensive application and increased requirements of GIS, it is becoming more 
and more important to model fuzzy spatial objects. It is necessary to analyze whether 
the two conventional models are sufficient to represent fuzzy spatial objects and 
relationships, especially the topological relations between them. In the object data 
model, the boundary of a crisp spatial object is explicitly represented, and the 
topological relations can be generated directly, as mentioned before. The field data 
model can express some continuity of spatial objects; however, the topological relations 
are implicit. It can be perceived that both models have some difficulties in conveying 
fuzzy spatial objects. The object data model represents a crisp object by the boundary 
(and its label point). It implies that the attribute of this object should be identical within 
its boundary. An obvious characteristic of a fuzzy spatial object is that its membership 
values vary along with its location. Therefore, it is almost impossible to represent fuzzy 
spatial objects in the object data model. The field data model has the capability to depict 
the continuity of a spatial object. It usually represents one attribute within one pixel. 
And since there is no boundary, objects are not formed in this data model. However, in 
nature, it is very usual for one location to have several membership values that belong to 
different classes. For example, one pixel may have membership value 0.3 for grassland, 
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and 0.7 for bush. Therefore, several attribute domains should be designed to denote 
them. The topological relations can be generated only after several steps, including the 
derivation of fuzzy objects, the generation of boundaries, and then the identification of 
the topological relations. It is also inconvenient to depict fuzzy spatial objects, 
especially for topological relations between fuzzy spatial objects.  
 
According to the above analysis, it can be perceived that both models have some 
difficulties in representing fuzzy spatial objects and their topological relations. It is 
necessary to create a model that is capable of representing fuzzy spatial objects 
efficiently, with a sound topological structure, as depicted in the vector data model. 
Ideally, the fuzzy polygon, fuzzy line and fuzzy point should be able to be modeled as 
shown in Figure 1.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10 A model for fuzzy spatial objects 
 
 

1.2.5 Modeling land cover changes 

A model should be able to tackle some problems for GIS applications. The correctness 
of a theoretic fuzzy spatial model has to be verified in practice. 
 

1.2.5.1 Generation of fuzzy land cover objects 

The importance of land in China cannot be overemphasized. Concerning transitional 
land cover changes, it is better to model land covers as fuzzy objects as we suggested in 
Section 1.1. The key problem then is how to derive the membership values for land 
cover objects.  
 
In general, membership values can be calculated by two kinds of methods: active and 
passive (Cheng et al. 1997). The active method derives the membership function and 
values by experts or based on some knowledge. For example, if we divide people into 
three fuzzy classes: “young”, “middle” and “old”, we can subjectively design 
membership values for these classes. The passive method calculates the fuzzy 
membership values according to the data itself. For example, we can do a survey for 
“young”, “middle” and “old”, and calculate the membership values based on the census. 
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Our question is how to generate membership values for fuzzy land cover objects. What 
is the procedure then? For example, there is a TM image (Figure 1.11) of an area. How 
can a fuzzy land cover object be generated from this image? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.11 A TM image 
 

1.2.5.2 Querying fuzzy land cover objects 

One of the fundamental capabilities of GIS is to query spatial objects in different ways, 
especially its power to find spatial objects according to size, direction and topological 
relations. This thesis is particularly concerned with queries based on topological 
relations. The question then is how to query fuzzy objects based on topological relations 
to meet different kinds of requirements. 
 

1.2.5.3 Reasoning about land cover changes 

Reasoning is the process of combining facts and rules to deduce new facts (Sharma 
1996). A reasoning system usually includes the following parts: database, knowledge 
acquisition and knowledge base, inference rules and inference machine (Figure 1.12). 
 
 
 
 
 
 
 
 
 
 

Figure 1.12 General reasoning procedure 
 
For land cover objects, it is important to investigate the size of changes. Where are these 
changes? And is the change large, average or small?   
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1.3 Objectives 
The objective of this research is to build a formal framework for modeling fuzzy spatial 
objects in GIS. It involves the theoretic modeling of fuzzy spatial objects and building a 
practical data model to solve some practical problems by using fuzzy spatial objects. 
The objective can be broken down into a theoretic part and a practical part. The 
theoretic objectives are:  

(1) To derive a formal method for defining fuzzy spatial objects; 
(2) To identify topological relations between fuzzy spatial objects; and 
(3) To propose a formal framework for modeling fuzzy spatial objects. 

 
Practically, it is necessary to construct a concrete fuzzy spatial object model with the 
formal framework and solve some problems for certain applications. Because of the 
importance of land cover and its change in China, modeling land cover objects is 
selected as a practical application. The practical objectives are: 

(1) To generate fuzzy land cover objects; 
(2) To query fuzzy land cover objects according to topological relations; and 
(3) To apply fuzzy spatial objects for reasoning about land cover changes.     

 
 

1.4 Research questions 
In order to achieve the above objectives, the problems stated in Section 1.2 can be 
further broken down into the research questions below: 

(1) What are fuzzy points, fuzzy lines and fuzzy regions? How can we derive a 
method to define them mathematically? What is the difference between fuzzy 
spatial objects and crisp spatial objects?  

(2) What are the topological relations between fuzzy spatial objects? How can we 
propose a formal approach to formalizing topological relations between fuzzy 
spatial objects? How can we identify the topological relations between fuzzy 
spatial objects? For example, how can we identify topological relations 
between two fuzzy regions? What are they? If we compare approaches to 
identifying topological relations between crisp spatial objects, what are the 
differences? 

(3) How can we derive a structure for modeling fuzzy points, fuzzy lines and 
fuzzy regions? 

(4) How can we derive a method for calculating the membership values for fuzzy 
land cover objects? 

(5) How can we query fuzzy spatial objects based on various topological 
relations? 

(6) How can we infer the change size based on fuzzy land cover objects?  
 
 

1.5 Methodology 
In order to define the concepts of fuzzy points, fuzzy lines and fuzzy regions formally, 
an appropriate theory is the premise of the research. It is noticed that topology theory is 
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adopted for defining crisp points, crisp lines and crisp regions. The newly proposed 
fuzzy topology theory should be sound for defining fuzzy points, fuzzy lines and fuzzy 
regions since it is constructed based on fuzzy sets.   
 
The topological relations between crisp spatial objects are formalized and identified 
based on the crisp topological space. The cell complex structure is widely applied to 
represent crisp points, lines and polygons, and to express the topological relations 
between them. Therefore, it is also appropriate to turn to a fuzzy topological space to 
formalize topological relations between fuzzy spatial objects, and for a structure to 
model fuzzy points, lines and regions.   
 
In order to model fuzzy land cover objects, a method for generating membership values 
should be proposed. Fuzzy set theory is the ideal tool for deriving membership values of 
fuzzy land cover objects. For the same reason, the fuzzy reasoning method is adopted to 
infer the land cover changes based on the fuzzy spatial objects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13 Research methodology 
 
 
The research starts with the basic concepts of fuzzy set theory, topology, fuzzy topology 
and fuzzy reasoning. Based on the analysis of topological properties of fuzzy set in 
fuzzy topological space, a formal method is proposed for formalizing topological 
relations between fuzzy regions in a special fuzzy topological space. The topological 
properties are then further extended into some novel concepts. These concepts are then 
adopted to define a fuzzy region and to formalize the topological relations between 
fuzzy regions. In order to define fuzzy points and fuzzy lines and to identify topological 
relations between them, a fuzzy cell complex structure is proposed, like a crisp cell 
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structure for crisp spatial objects. This fuzzy structure constitutes the formal framework 
for modeling fuzzy spatial objects. And it is then applied in modeling fuzzy land cover 
objects, which includes generating fuzzy land cover objects, querying these objects 
based on topological relations, and reasoning about changes of land covers. Sanya city, 
which is located on Hainan Island in China, is selected for the practical application 
since many changes have happened since 1992. The detailed situation in Sanya city is 
introduced in Chapter 6. The methodology is structured in Figure 1.13. 
 
The research procedure is sketched in Figure 1.14. 
 

1.6 Structure of the thesis 
This research handles two aspects: a formal framework for modeling fuzzy spatial 
objects and the practical modeling fuzzy land cover objects. Chapter 2 introduces the 
basic theory that will be adopted in the following chapters. Chapters 3, 4 and 5 discuss 
the framework for modeling fuzzy spatial objects and topological relations theoretically. 
Chapters 6, 7 and 8 cover applications of modeling fuzzy land cover objects: from 
generating these objects, to querying them based on various topological relations, to 
using a fuzzy reasoning approach for reasoning about the changes. Conclusions and 
discussions are summarized in Chapter 9. The main contents of the thesis can be 
described as follows:  
 
Chapter 1 gives an overview of the thesis, including the background of the research, 
research problems, objectives, research questions and methodology. The background 
introduces the following aspects: what fuzzy spatial objects intuitively are and why we 
need them, what land cover objects are and why they are fuzzy, and the importance of 
adopting fuzzy spatial objects to analyze land cover changes in China. The problem 
statements expound the main research interests, such as fuzzy spatial objects, 
topological relations, formal fuzzy spatial data model, and modeling fuzzy land cover 
objects. The objectives and key research questions are put forward based on the problem 
statements. The methodology describes how to achieve the objectives and solve the 
research questions.  
 
Chapter 2 explains some fundamental concepts of fuzzy set theory, topology and fuzzy 
topology, and fuzzy reasoning, which are the main tools of the research.  
 
Chapter 3 discusses the topological relations between fuzzy spatial objects. It starts with 
the definitions of fuzzy boundary defined in fuzzy topological space. Then the 
limitations of the 9-intersection matrix in a general fuzzy topological space are 
explained. In order to formalize the topological relations between fuzzy spatial objects, 
a special fuzzy topological space is defined, in which a 3*3-intersection matrix can be 
defined, which is the same form as the 9-intersection. Furthermore, a 4*4-intersection 
matrix is formalized in this fuzzy topological space, and more topological relations are 
identified between two simple fuzzy regions defined in this special fuzzy topological 
space.  
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Figure 1.14 Research procedures 
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in a general fuzzy topological space is then given. The topological relations are also 
identified between simple fuzzy regions. A comparison is then given between this 
method and the method adopted in Chapter 3. 
 
Chapter 5 proposes a fuzzy cell complex structure, which constitutes a theoretic 
framework for modeling different kinds of fuzzy spatial objects, including fuzzy regions, 
fuzzy lines and fuzzy points. The fuzzy regions, lines and points are defined and the 
topological relations between the fuzzy regions, lines and points are identified by using 
the 3*3-intersection matrix on this structure.   
 
Chapter 6 discusses the general procedure for generating fuzzy spatial objects. After that, 
a composite method is proposed for generating fuzzy land cover objects from TM 
images.  
 
Chapter 7 proposes four methods for querying fuzzy spatial objects based on different 
topological relations and different requirements. The differences between these methods 
are compared.   
 
Chapter 8 discusses a method of applying fuzzy spatial objects for analysis. The land 
cover objects are compared and their changes are inferred using a fuzzy reasoning 
method. The result shows that adopting fuzzy land cover objects rather than crisp land 
covers produces more accurate results.  
 
Chapter 9 presents conclusions and discussions, which point out the main contribution 
of this thesis and further research questions.   
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Chapter Two        

Fuzzy Set Theory and Topology 

 
 
 
 
Spatial objects can be regarded as sets from a set theoretic point of view. Crisp 
(non-fuzzy) spatial objects have been well defined based on classical (crisp) set theory 
and general (crisp) topology. In order to define and model fuzzy spatial objects in GIS, 
it is necessary to investigate their essence using fuzzy set theory and fuzzy topology. 
This chapter will review some basic concepts in classical set theory, fuzzy set theory, 
general topology and fuzzy topology, which will be adopted for fuzzy spatial object 
definition and modeling in the following chapters.  
 

2.1 Classical set theory 

2.1.1 Set 

A set is a collection of well-distinguishable objects (Kainz 2004). Any object in the 
collection is an element or a member of the set. An element x of a set X is written as 

Xx∈ . If x is not a member of X we write Xx∉ . If a set has a finite number of 
elements, we call it a finite set, otherwise we call it infinite. A set with no elements is 
called the empty set and is denoted as ∅ .  
 
A finite set can be specified explicitly by listing all its elements. For example, a set A 
consisting of the natural numbers smaller than 4 can be listed as }3,2,1{=A . A set can 
also be described implicitly by means of a free variable x in a predicate )(xP . The set 
A can be described by the properties }4:{ <∈= xNxA ; N is the set of all natural 
numbers. The cardinality of a set is the number of its elements.  
 
If each element of a set A is an element of a set B, then A is a subset of B, written as 

BA⊆ . The universe of discourse (or universe) is the set consisting of all elements in a 
certain study. If U is the universe, then every subset UA ⊆ . A is called a proper subset 
of B when BA⊆  and BA ≠ . A⊆∅ . The set of all subsets of a set A is called the 
power set of A, denoted as )(A℘ , for example, the power set of the set }3,2,1{=A  is  
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}}3,2,1{},3,1{},3,2{},2,1{},3{},2{},1{,{)( ∅=℘ A . We can also draw a set with a VENN 
diagram (Figure 2.1) 
 
 
 
 
 

Figure 2.1 VENN diagram 
 
 

2.1.2 Set operations 

Four operations are often used between sets in set theory: union, intersection, difference 
and complement. 
 
Union: the union of two sets A and B, written as BA∪ , is the set 

}:{ BxorAxxBA ∈∈=∪ . It is the set containing all the elements that belongs either 
to A or to B, or to both.  
 
Intersection: the intersection of two sets A and B, written as BA∩ , is the set 

}:{ BxandAxxBA ∈∈=∩ . A and B are disjoint if ∅=∩ BA .  
 
Union and intersection can be defined for more than two sets. Let I be an arbitrary finite 
or infinite set. Every element Ii∈  is assigned a set iA , then the union of iA  is 
defined as ]}[:{ ii AxIixA ∈∈∃=U , where i∃  stands for there exists i. The 
intersection of iA  is ]}[:{ ii AxIixA ∈∈∀=I , where i∀  means for all i.  
 
Difference: the difference between two sets A and B, written as BA − , is the set 

}:{ BxandAxxBA ∉∈=− .  
 
Complement: the complement of a set A in the universe U, written as cA , is the set 

}:{ AxxAUAc ∉=−= .  
 

2.1.3 Cartesian product and relation 

The Cartesian product of two sets A and B, written as BA× , is the set of all pairs 
}:,{ BbandAabaBA ∈∈><=× . A binary relation R over BA×  is a subset of 

BA× . The set A is called the domain of R and B is called the codomain. We can write 
Rba >∈< ,  also as aRb , or ),( baR . If the relation is defined over AA× , we call it 

a relation on A. 
 
Let R be a relation over BA× , the inverse relation (or reverse) 1−R  is defined as the 
relation over AB ×  such that },:,{1 RbaabR >∈<><=− . Let R be a relation on A. It 

A 
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may have some of the following properties: 
(1) R is reflexive if xRx  for every x in A;  
(2) R is irreflexive if xRx  for no x in A; 
(3) R is symmetric if xRy  implies yRx  for every x, y in A; 
(4) R is antisymmetric if xRy  and yRx  together imply yx =  for every x, y in 

A; 
(5) R is transitive if xRy  and yRz  together imply xRz  for every x, y, z in A. 

 
A reflexive, symmetric and transitive relation is called an equivalence relation. A 
reflexive, antisymmetric and transitive relation is called an order relation. A set 
equipped with an order relation is called a partially ordered set, or poset for short.  
 
Let P be a poset, and PA⊆ . An element Pb∈  is called an upper bound of A if 

ba ≤  for every Aa∈ . Pb∈  is called a lower bound of A if ba ≥  for every 
Aa∈ . An element Pb∈  is called the join (or the least upper bound, or supremum) of 

A, denoted by Asup , or A∨  if b is an upper bound of A and if a is an upper bound of 
A, then ab ≤ . Pb∈  is called the meet (or the greatest lower bound or infimum) of A, 
denoted by Ainf , or A∧ , if b is a lower bound of A and if a is a lower bound of A, 
then ab ≥ . 
 
A new relation can be generated by composing a sequence of relations. Let 1R  be a 
relation from A to B, and 2R  be a relation from B to C. The composite relation from A 
to C, written as 21RR , is defined as: 

]},,[:,{ 2121 RcbandRbaandBbbandCcandAacaRR >∈<>∈<∈∃∈∈><=  
 

2.1.4 Mappings 

Mappings (functions) are special kinds of binary relations. A mapping f from A to B, 
written as BAf →: , is a binary relation from A to B such that for every Aa∈ , there 
exists a unique Bb∈  such that fba >∈< ,  , and is written as baf =)( . A is called 
the domain, and B is called the codomain (or image) of f.  A mapping from A to B is 
called surjective (onto or surjection) if BAf =)( . A mapping from A to B is called 
injective (one-to-one, or injection) if 'aa ≠ , then )'()( afaf ≠ . A mapping from A to 
B is called bijective (one-to-one and onto,or bijection) if it is both surjective and 
injective.  
  
 

2.2 General topology 
Topology is a central concept in every GIS. Intuitively speaking, it deals with the 
structural representation of spatial features and their properties that remain invariant 
under certain transformations (Kainz 2004). 
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2.2.1 Topological space 

Mathematically, a topology is a collection of subsets on a set that follows certain rules. 
Let X be a set, and τ  be a collection of subsets of X, i.e., )(X℘⊆τ  (Bredon 1991). 
If 

ττ ∈∈∅ X,  
ττ ∈∩∈∀ BABA ,,  

ττ ∈∈∀
∈

i
Ii

i AA U,  

Then τ  is called a topology on X. ),( τX  is called a topological space on X. In order 
to differentiate with fuzzy topological space (which will be introduced later), we call it 
crisp (or ordinary) topological space, or cts for short. Every element Xx∈  is called a 
point of the topological space. Every element of τ  is called an open set of the 
topological space ),( τX . A set is closed if its complement is open.  
 

2.2.2 Interior, closure, boundary and exterior 

For GIS data modeling, the most important concepts are the interior and the closure of a 
subset in the topological space. Let X be a topological space. The union of all open sets 
contained in subset A is called the interior of A, denoted by oA . oA  is the largest 
open set contained in A. The intersection of all the closed sets containing A is called the 
closure of A, denoted by −A . −A  is the smallest closed set containing A. A subset A in 
X is called a neighborhood of point x if there exists a Bx∈  such that ABx ⊆∈ . The 
union of all neighborhoods of a point is called the neighborhood system of that point. A 
subset is open iff (if and only if) it is a neighborhood of each of its points. The topology 
on a set can also be defined by using the neighborhood system.  
 
We are also concerned about the boundary and the exterior of a subset in the topological 
space. In a topological space X, the boundary of a subset A is defined as the difference 
between the closure and the interior of the subset A, i.e., oAAA −=∂ − . The exterior of 
A is the complement of −A  and denoted by eA . Obviously eA  is an open set.  
 
The following properties hold for the interior, the boundary, the closure and the exterior 
of the subset(s) in the crisp topological space.  
 
Proposition 2.1 Let A, B be two subsets of cts X. 

(1) AAo ⊆ , ooo AA =)( ; 
(2) oo BABA ⊆⇒⊆ ; 
(3) ooo BABA ∩=∩ )( , ooo BABA ∪⊇∪ )( . 

 
Proposition 2.2 Let A, B be two subsets of cts X. 

(1) −⊆ AA , −−− = AA )( ; 
(2) ⇒⊆ BA −− ⊆ BA ; 
(3) −−− ∩⊆∩ BABA )( ， −−− ∪=∪ BABA )( . 
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Proposition 2.3 Let A be a subset of cts X. coccoc AAAA == −− , . 
 
Proposition 2.4 Let A be a subset of cts X. coco AAAAX −− ∪=∪= . 
 
Proposition 2.5 Let A be a subset of cts X. 

(1) )( cco AAAAAA ∂=∩=−=∂ −−− ; 
(2) AAA o ∂∪=− ; 
(3) eo AAAX ∪∂∪= . 

 
Proposition 2.6 Let A be a subset of cts X. eo AAA ,, ∂  are mutually disjoint in X.  
 
The concept of the interior, the boundary and the closure can be illustrated by an 
example. Let },,,{ dcbaX = , }},{},{,,{ baaX ∅=τ . τ is a topology on X. Suppose 

},,{ cbaA = , then },{ baAo = , },,,{ dcbaA =− , oAAdcA −==∂ −},{ , ∅=eA , 
}{dAc = , cco AA −=∅= , −== coc AdcA },{ , and },{)( dcAc =∂ . It can be checked 

that the above propositions hold in this topological space.   
 

2.2.3 T0, T1, Hausdorff, regular and normal space 

A topological space is called a 0T  space if at least one of two distinct points has a 
neighborhood that does not contain the other point. A topological space is called a 1T  
space if two distinct points have neighborhoods that do not contain the other point. A 
topological space X is called a Hausdorff space or 2T  if two distinct points Xba ∈,  
possess disjoint open neighborhoods, i.e., there exist two open sets A and B with Aa∈ , 

Bb∈  and  ∅=∩ BA . A topological space is called a regular space or 3T  if it is 

1T  and for every closed set C and every point x outside C there exists an open set A that 
contains C and a disjoint neighborhood N of x. A topological space is called a normal 
space or 4T  space if it is 1T  and for any two disjoint closed sets 1C  and 2C  there 
exist disjoint neighborhoods that contain the closed sets.  
 
Every normal space is regular. Every regular space is a Hausdorff space, every 
Hausdorff space is a 1T  space, and every 1T  space is 0T . 
 

2.2.4 Separation and connectedness 

Two sets A and B in a topological space X are called separated if there exist two open 
(or closed) sets H and K such that AH ⊇ , BK ⊇  and ∅=∩ BH , ∅=∩ KA . A 
topological space is connected if whenever it is represented as the union of two 
non-empty subsets BAX ∪= , then ∅≠∩− BA , or ∅≠∩ −BA . Iff X is a 
connected space, then the only subsets of X that are both open and closed are the empty 
set and X itself; in other words, X cannot be represented as the union of two disjoint 
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non-empty open (or closed) sets.  
 

2.2.5 Homeomorphism and topological relation 

We can define mappings between topological spaces. Let YXf →:  be a mapping 
from topological space X to topological space Y. The mapping f is called continuous at 
point x if, for every open set B containing )(xf , there is an open set A containing x 
such that the image of A is a subset of B, i.e., BAf ⊆)( . If f is continuous at every 
point of X, then f is called a continuous function.  
 
If a mapping from topological space X to topological space Y is continuous, bijective, 
and its inverse is also continuous, then the mapping is called a homeomorphism (or 
topological mapping). A property of a topological space that is preserved by a 
homeomorphism is called a topological property or a topological invariant.  
 
Let R be a binary relation from subset XA⊆  to subset XB ⊆  on topological space 
X. R is called a topological relation from A to B on X if R is a topological invariant, i.e., 
R is a topological property under a topological mapping from topological space X to 
topological space Y.  
 

2.2.6 Metric and Euclidean space 

Let X be a non-empty set and d a mapping +→× 0RXX  such that for every Xyx ∈, : 
(1) 0),( =yxd  iff yx = ; 
(2) ),(),( xydyxd = ; 
(3) ),(),(),( zxdzydyxd ≥+ . 

 
Then the pair ),( dX  is called a metric space and d is called a distance function (or a 
metric) on X. Consider the real plane 2R , the metric Ed  is called the Euclidean 

distance if 2
21

2
21 )()(),( yyxxbad E −+−=  between two points 

),(),,( 2211 yxbyxa == . The Euclidean distance is the shortest distance between two 
points. ),( 2

EdR  is called the two-dimensional Euclidean space. This space is the usual 
space of plane geometry. We simplify it by 2R . ),( E

n dR  where 
22

22
2

11 )(...)()(),( nnE babababad −++−+−=  between two points 
),...,,(),,...,,( 2121 nn bbbbaaaa ==  is called an n-dimensional Euclidean space, and it 

is simplified by nR .  
 
In the metric space ),( dX , define a set }),(:{),( εε <∈= yxdXyxN  )( 0

+∈Rε  as 
an open set. Then ),( dX  is a topological space induced by the metric d. ),( εxN  is a 
neighborhood of x. This topology is called a metric topology on X, and the space 
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),( dX  is called the metric topological space. 
 
As a special case of metric space, the two-dimensional Euclidean space ),( 2

EdR  is a 
topological space. The topology induced by the Euclidean distance is called the 
Euclidean topology or usual topology. In Euclidean space 2R , a neighborhood with 
radius ε<r  )( 0

+∈Rε  around a point is called an open disk, which is an open set. A 
neighborhood with radius ε≤r  around a point is called a closed disk. A closed disk is 
a closed set. In 2R  the set of point x where radius ε=r  is the boundary of the open 
disk of point x. It is also called the sphere.  
 
The Euclidean space is a special metric space. A metric space with metric topology is a 
normal space, and thus is a Hausdorff space. The Euclidean space is connected. In the 
Euclidean space, the interior of a closed disk }),(:{),( εε ≤∈= yxdRyxD  is 

}),(:{),( εε <∈= yxdXyxD o , and its boundary is }),(:{),( εε =∈=∂ yxdXyxD . 
Figure 2.2 shows a closed disk, an open disk and the boundary of an open disk and a 
closed disk in 2R .  
 
 
 
 
 
 
 
 

Figure 2.2 Closed disk, open disk and their boundary in 2R  
 
 

2.2.7 Relationships between topological spaces 

We have mentioned several topological spaces, such as 43210 ,,,, TTTTT , connected 
space, metric space and Euclidean space. The relationships between these topological 
spaces are illustrated in Figure 2.3, i.e., the Euclidean space is a metric space; a metric 
space is a normal space, etc. The Euclidean space is connected, while the others might 
not be connected. 
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Figure 2.3 Relationships between topological spaces 
 
 

2.3 Fuzzy set theory  

2.3.1 Fuzzy set 

Fuzzy set theory is the extension of classical set theory by allowing the membership of 
elements to range from 0 to 1. Let X be the universe of a classical set of objects. 
Membership in a classical subset A of X is often viewed as a characteristic function 

)(xAµ  (x is a generic element of X) from X to }1,0{  (Dubois and Prade 1980). }1,0{  
is called a valuation set. If the valuation set is allowed to be the real interval ]1,0[ , A is 
called a fuzzy set. )(xAµ  is the membership value (or degree of membership) of x in A. 
Clearly, A is a subset of X that has no sharp boundary. A fuzzy set A can be represented 
by the set of pairs })),(,{( XxxxA A ∈= µ . When X is a finite set },...,,{ 21 nxxxX = , 
then A can be expressed as 

∑
=

=+⋅⋅⋅++=
n

i
iiAnnAAA xxxxxxxxA

1
2211 /)(/)(/)(/)( µµµµ . When X is infinite, we 

write ∫= X A xxA /)(µ . We simplify the representation of a fuzzy set A by the 
supremum of the membership values )(xA  at every element x of A if there is no 
confusion.  
 
According to the definition of a fuzzy set, the membership values with a range [0,1] 
have replaced the characteristic values of a crisp (or non-fuzzy) set in the universe. In 
this sense, the crisp set can be viewed as a special fuzzy set. Two fuzzy sets A and B are 
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said to be equal if )()(, xBxAXx =∈∀ , and denoted as BA =  (Figure 2.4). Fuzzy 
set A is said to be contained in B if )()(, xBxAXx ≤∈∀ . We write BA⊆  (Figure 
2.4). When the inequality is strict, the inclusion is said to be strict and is denoted as 

BA⊂ .   
 
 
 
 
 
 
 
 
 

Figure 2.4 Fuzzy sets BA =  and BA⊆  
 
The set of all fuzzy subsets of a set X is called the fuzzy power set of X, and we write it 
as )(~ X℘ . We also write it as )(X℘  if there is no confusion with the crisp power set 
of X. The support of a fuzzy set A is the elements of x whose membership value is 
greater than zero, i.e., }0)(:{)(supp >∈= xXxA Aµ . The elements of x such that 

2/1)( =xAµ  are the crossover points of A. The height of a fuzzy set A is the largest 
membership value of A. A is said to be normalized if 1)(, =∈∃ xXx Aµ .  
 
As an example, let X be the set of natural numbers N; A be a fuzzy set of integers 
approximately equal to 10, defined as 12/2.011/6.010/0.19/6.08/2.0 ++++=A . 
The support of A is }12,11,10,9,8{)(supp =A .  The height of A is 1)( =Ahgt . It is a 
normalized fuzzy set.  
 
 

2.3.2 Basic set-theoretic operations 

The classical union, intersection and complement operations of two (crisp) subsets of X 
can be extended between fuzzy sets A and B of X as follows (Figure 2.5): 

(1) Union:  
  }:))(),({max( XxxBxABA ∈∀=∪ , i.e., ))(),(max()( xxx BABA µµµ =∪ ; 

(2) Intersection:  
}:))(),({min( XxxBxABA ∈∀=∩ , i.e., ))(),(min()( xxx BABA µµµ =∩ ; 

(3) Complement: the complement cA  of A is defined as: 
      }),(1)(:)({ XxxAxAxAA ccc ∈∀−== , i.e., )(1)( xx AAc µµ −= .  
 
 
 
 
 
 

µ(x) 

)()( xBxA =  
 1.0 

0 
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µ(x) 
)()( xBxA ≤  

 )(xBµ  
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)(xAµ  
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BA =  BA⊆  
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Figure 2.5 Intersection, union and complement of fuzzy sets 
 
The following properties hold for fuzzy sets: 

(1) Commutativity: ABBA ∪=∪ , ABBA ∩=∩ ;                         
(2) Associativity: )()( CBACBA ∪∪=∪∪ , )()( CBACBA ∩∩=∩∩ ;  
(3) Idempotency: AAA =∪ , AAA =∩ ; 
(4) Distributivity:    

)()()( CABACBA ∪∩∪=∩∪ , )()()( CABACBA ∩∪∩=∪∩ ; 
(5) Absorption: AA =∅∪ , AXA =∩ ; 
(6) De Morgan’s Law: ccc BABA ∩=∪ )( , ccc BABA ∪=∩ )( ; 
(7) Involution: AAcc = ; 
(8) Equivalence formula: )()()()( BABABABA cccc ∩∪∩=∪∩∪ ; 
(9) Symmetrical difference formula:  

)()()()( BABABABA cccc ∪∩∪=∩∪∩ . 
 
However, the excluded-middle law is no longer true: XAA c ≠∪ , ∅≠∩ cAA . 
 

2.3.3 Extended operations 

Because of the richness of the framework of fuzzy sets, more operations can be defined 
between fuzzy sets A and B on the fuzzy power set )(X℘ .  
 
The differences between fuzzy sets A and B have several extensions. Three are often 
used in literatures.  

(1) Difference )( BA− : cBABA ∩=− ; 
(2) Bounded difference )( BA∇ : XxxBxABA ∈∀−=∇ ))()(,0max( ;  
(3) Absolute difference )||( BA − : XxxBxABA ∈∀−=− |)()(||| . 

 
Other useful operations are: 

(4) Product )( BA ⋅ : XxxBxABA ∈∀⋅=⋅ )()( ; 
(5) Bold intersection )( BA

•
∩ : ))1)()(,0max()( −+=∩

•
xBxABA Xx∈∀ ; 

(6) Probabilistic sum )ˆ( BA+ : )()()()(ˆ xBxAxBxABA ⋅−+=+ Xx∈∀ ; 

x x 

µ(x) ))(),(min( xBxA
 1.0 

0 

µ(x) ))(),(max( xBxA

1.0 

0 

µ(x) 
)(xAc  

1.0 

0 
x 

BA∩  BA∪ cA  

)(xAµ  
 

)(xBµ  
 

)(xAµ  
 

)(xAµ  
 

)(xBµ  
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(7) Bounded union )( BA
•

∪ : ))()(,1min( xBxABA +=∪
•

Xx∈∀ . 
 
These operations are illustrated in Figure 2.6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 Difference, bounded difference, absolute difference, product, bold 
intersection, probabilistic sum and bounded union 

 
More generally, most of these operators can be classified into two norms. A T-norm is a 
binary function from ]1,0[]1,0[ ×  to ]1,0[  that satisfies the following conditions: 

(1) 0)0,0( =T , aaTaT == ),1()1,( ; 
(2) ),(),( dcTbaT ≤  whenever dbca ≤≤ , ; 
(3) ),(),( abTbaT = ; 
(4) )),(,()),,(( cbTaTcbaTT = .  

 
An S-norm is a binary function from ]1,0[]1,0[ ×  to ]1,0[  that satisfies the following 
conditions: 

(1) 1)1,1( =S aaSaS == ),0()0,( ; 
(2) ),(),( dcSbaS ≤ whenever dbca ≤≤ , ; 
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(3) ),(),( abSbaS = ; 
(4) )),(,()),,(( cbSaScbaSS = . 

 
In the above operators, BA∩ , BA ⋅ , and BA

•
∩  are T-norms.  

 

2.3.4 α-cuts and fuzzy α-cuts 

A (crisp) set of elements })(:{})(:{ ααµα ≥∈=≥∈= xAXxxXxA A  of a fuzzy set 
A is called the α-cut (or α-level) αA  of A. The (crisp) set })(:{ αµα >∈= xXxA A  is 
called the strong (or strict) α-cut of A. A fuzzy set A can be expressed in terms of the 
characteristic functions of its α-cuts according to the formula: 

))(,min(sup
]1,0(

xAA α
α

α α
∈

=  where 1)(, =∈∀ xAAx αα , and 0 otherwise.  

The fuzzy α-cut (or fuzzy α-cut) α~A  of A is defined as ))(()( ]1,~[~ xAAxA αα = , where 
]1,~[α 0~ >α  is an interval. A fuzzy α-cut can be understood as the set of elements 

whose membership values are greater than “approximately α”, i.e., belong to a fuzzy 
interval ]1,~[α .  
 
For example, let a fuzzy set A be: 

13/2.012/4.011/6.010/0.19/6.08/4.07/2.0 ++++++=A  
Take 4.0=α . Then, the α-cut αA  of A is a crisp set: }12,11,10,9,8{4.0 =A ; the strong 
α-cut αA  of A is }11,10,9{

4.
=A ; and the  fuzzy α-cut α~A  is 

12/4.011/6.010/0.19/6.08/4.0
4~.

++++=A .  
 

2.3.5 Fuzzy relation 

2.3.5.1 Fuzzy relation 

Let nXXX ,,, 21 ⋅⋅⋅  be n universes. An n-ary fuzzy relation R on nXXX ×⋅⋅⋅×× 21  is 
a fuzzy set in nXXX ×⋅⋅⋅×× 21 . An ordinary relation is a particular case of a fuzzy 
relation.  A fuzzy set R on YX ×  is called a binary fuzzy relation from X to Y, i.e., 
there is a mapping ]1,0[: →×YXR .  Its membership function Rµ  decides the 
relation degree of ordered pairs ),( yx . If ),( yxRµ  takes only value 0 or 1, then R is a 
binary crisp relation. If X=Y, then R is called a (binary) fuzzy relation on X.  
 
A binary fuzzy relation is usually represented through a fuzzy matrix. Let 

},,,{ 21 mxxxX ⋅⋅⋅= , },,,{ 21 nyyyY ⋅⋅⋅= . Then the fuzzy relation R on YX ×  can be 
represented by the following m*n matrix: 
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⋅⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

=

mnmm

n

n

rrr

rrr
rrr

R

21

22221

11211

 

where njmiyxr jiRij ...,1;,...,1),,( === µ . 
 
Let R be a fuzzy relation on XX × , then R is reflexive if 1),( =xxR  Xx∈∀ . R is 
irreflexive if 0),( =xxR Xx∈∀ . Other reflexive properties such as ε-reflexive and 
weakly reflexive can also be found in the literature. R is symmetric if 

),(),( xyRyxR = Xyx ∈∀ , . R is perfectly antisymmetric if Xyx ∈∀ , , yx ≠ , and 
0),( >yxR , then 0),( =xyR . R is antisymmetric if yx ≠ , then 0),(),( == yxRxyR , 

or ),(),( yxRxyR ≠ . R is (max-min) transitive if Xzyx ∈∀ ,, , RRR ⊆o , or 
)),(),,(min(),( zyRyxRzxR ≥ . 

 
A fuzzy relation is called fuzzy preorder if it is reflexive and transitive. A fuzzy relation 
is called a fuzzy partial ordering if it is reflexive, transitive and perfectly antisymmetric.  
 
Let X be a Cartesian product of universes, nXXXX ×⋅⋅⋅××= 21 , and nAAA ,,, 21 ⋅⋅⋅  be 
n fuzzy sets in nXXX ,,, 21 ⋅⋅⋅ , respectively. The Cartesian product of nAAA ,,, 21 ⋅⋅⋅  is 
defined as ),,/()(,),(min( 1121 1 nnAAn xxxxAAA

n
⋅⋅⋅⋅⋅⋅=×⋅⋅⋅×× ∑ µµ . The Cartesian 

product of fuzzy sets A and B is then written as:  
))(),(min(),)(( yBxAyxBA =×  where YBXA ⊆⊆ , YyXx ∈∈ , . 

Obviously, the Cartesian product BA×  is a binary fuzzy relation.   
 

2.3.5.2 Fuzzy mapping 

Let YXf →:  be an ordinary (crisp) mapping from X to Y. The extension →f  is 
called a fuzzy mapping on )(X℘  to )(Y℘  induced by f such that (Chang 1968): 

})(,:)({))((),()(: yxfXxxAyAfYXf =∈=℘→℘ ∨→→ . 
←f  is the inverse image of →f : 

))(())((),()((: xfBxBfXYf =℘→℘ ←← ; 
where )(),( YBXA ℘∈℘∈ , YyXx ∈∈ , .  
 

2.3.5.3 Fuzzy composition  

Let )(XC ℘∈  be a fuzzy set, and )( YXR ×℘∈  be a fuzzy relation from X to Y. The 
sup-min composition is defined as:    

)),(),(min(sup)( yxRxCyRC
Xx∈

=o  Yy∈∀ . 

Take an example. Let C be a fuzzy set in the universe }3,2,1{ , and R be a binary 
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relation on }3,2,1{ . Assume that 3/2.02/11/2.0 ++=C  and 
















=

18.03.0
8.018.0
3.08.01

3
2
1

321

R  

Then the sup-min composition will be  

3/8.02/11/8.0
18.03.0

8.018.0
3.08.01

]3/2.02/11/2.0[ ++=















++= oo RC  

 
Let R be a fuzzy relation on YX × , and Q be a fuzzy relation on ZY × . The sup-min 
composition of R and S is defined as SR o , where 

)),(),,(min(sup),( zySyxRzxSR
Yy∈

=o  Xx∈∀ , Zz ∈∀ . For example, let 
















=

8.07.019.0
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7.01.01.08.0
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R , 



















=

5.07.06.0
8.05.09.0

04.00
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2

1
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y
y
y
y

zzz

S ,  

then  
















=

7.09.07.0
04.00
5.08.06.0

3

2

1

321

x
x
x

zzz

SR o  

 
 

2.4 Fuzzy reasoning 

2.4.1 Fuzzy logic 

In Boolean logic, a proposition is a statement that is either true (1) or false (0). {0,1} is 
called the truth value. For example, “Peter is a man” is a proposition. A fuzzy 
proposition is a statement whose truth value is in [0,1]. The general form of a fuzzy 
proposition is “A: h is F”, where h is a variable and F is a fuzzy set. For example, 
“Peter is a tall man” is a fuzzy proposition. The logic that studies fuzzy propositions is 
called fuzzy logic (Zadeh 1988). The operations between fuzzy propositions such as and, 
or, not can be defined as the operations defined for two fuzzy sets.    
 

2.4.2 Fuzzy implication 

In Boolean logic, let p and q be crisp propositions. The implication qp ⇒  can be 
defined by a truth table (Table 2.1). 
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Table 2.1 Truth table of implication  

p  q  qp ⇒  
1 1 1 
0 1 1 
0 0 1 
1 0 0 

   
Let A, B be fuzzy propositions. A fuzzy implication is a fuzzy relation from A to 
B: )()(),)(( yBxAyxBA ⇒=⇒ . The truth value of BA⇒  is decided by fuzzy sets 

)(),( yBxA . Take an example, let A and B be fuzzy propositions: A: the pressure is high, 
B: the volume is small. Represent a fuzzy proposition 

5/14/75.03/5.02/25.01/0 ++++=A , where {1,2,3,4,5} denotes the pressure value, 
and {0,0.25,0.5,0.75,1} is the membership degree of the high pressure. 

5/54/2.03/5.02/8.01/1 ++++=B . Assume the pressure is 4 and the volume is 1. 
Then a fuzzy implication BA⇒  will be represented by: 
          175.)1()4()1,4)(( ⇒=⇒=⇒ BABA  
 
Denote Uu∈  as a variable of A, and U is the set of variables. Denote Vv∈  as a 
variable of B. )(),( vBuA  represents the truth values of propositions A, B. The truth 
value of a fuzzy implication can be defined in several ways: 
 

(1) Larsen: )()()()( vBuAvBuA ⋅=⇒ ; 
(2) Lukasiewicz: ))()(1,1min()()( vBuAvBuA +−=⇒ ; 
(3) Mamdani: ))(),(min()()( vBuAvBuA =⇒ ; 

(4) Standard strict: 


 ≤

=⇒
otherwise

vBuAif
vBuA

0
))()(1

)()( ; 

(5) Gödel: 


 ≤

=⇒
otherwiseuAvB

vBuAif
vBuA

)(/)(
))()(1

)()( ; 

(6) Kleene-Dienes: ))(),(1max()()( vBuAvBuA −=⇒ ; 
(7) Kleene-Dienes-Lûk:  )()()(1)()( vBuAuAvBuA ⋅+−=⇒ . 

 
In the above example, if the Mamdani operator is adopted, then the fuzzy implication is: 

75.0)1,75.0min(175.0)1()4()1,4)(( ==⇒=⇒=⇒ BABA . 
 
Let A be a fuzzy set of )(X℘ . A modifier is a fuzzy set generated from A and 0>λ  
such that }))((:{)()(: λ

λ xAXxXXH ∈=℘→℘ . For example, we can define the 
fuzzy sets “very young”, or “more or less young” from fuzzy set “young” by  

2))(()( xAxAvery = , )()( xAxAlessormore = , where A is a fuzzy set young. 
 



Chapter two 

 34 

2.4.3 Principles of fuzzy reasoning 

In 1975, Zadeh introduced the theory of approximate reasoning. This theory provides a 
powerful framework for reasoning in the face of imprecise and uncertain information. 
Central to this theory is the presentation of propositions as statements assigning fuzzy 
sets as values to variables and the composition rules of inference.  
 
Suppose there are two interactive variables Xx∈ , Yy∈  (X, Y are universes), and the 
causal relationship between x and y is completely known, i.e., we know that y is a 
function of x: )(xfy = . Then we can make inferences easily by:  

)'(':eConsequenc
':Fact

)(:Premise

xfy
xx

xfy

=
=

=
 

 
The above inference rule says that if we have )(xfy = , and now 'xx = , then y takes 
the value )'(' xfy = .  
 
The basic problem of approximate reasoning is to find the membership function of the 
consequence B from the rule base },...,,{ 21 nRRR : 

y is B
Aisx

BisythenAisxifR

BisythenAisxifR
BisythenAisxifR

nnn

 :eConsequenc
:Fact

,:
...

,:
,:

222

111

  

 
In order to reach the final decision, several translation rules are defined: 
 
Entailment rule: 

BA
Aisxif

⊆
 

Bisx   
 
Conjunction rule: 

Bisxif
Aisxif

 

BAisx ∩  
 
Disjunction rule: 

BAisx
Bisxif

orAisxif

∪
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Projection rule:  

Rrelationhaveyxif ),(   (Example)   )2,3(),( tocloseisyxif   
)(RPisx X                          3tocloseisx  

 
Negation rule: 

)( Aisxnotif  
 Aisx ¬  

 
The most important rule in approximate reasoning is the compositional rule of inference. 
Let:  

':
,:

AisxFact
BisythenAisxifR

 

Consequence: 'Bisy  
where the consequence B’ is determined as the composition of fact and the fuzzy 
implication operator: 

)('' BAAB ⇒= o  
 
In approximate reasoning, the sup-min composition is the usual compositional method. 
The fuzzy implication may vary.  
 
If we take the above Lukasiewicz implication: ))()(1,1min()()( vBuAvBuA +−=⇒ . 
Then   

))))()(1,1min(),('(min(sup)(')(' vBuAuABAAvB
Uu

+−=⇒=
∈

o Vv∈  

 
For the Mamdani implication: ))(),(min()()( vBuAvBuA =⇒ . The composition rule 
will be:   

))))(),(min(),('(min(sup)(')(' vBuAuABAAvB
Uu∈

=⇒= o Vv∈ . 

 

2.4.4 Process of fuzzy reasoning 

Let },...,,{ 21 nRRR  be a rule base, and 0x  be a crisp value of input X.  

0

223

111

:
,:

...
,:
,:

xisxFact
CiszthenAisxifR

CiszthenAisxifR
CiszthenAisxifR

nnn

 

Consequence: Cisz  
 
The approximate reasoning is to find C when the input is 0x . The basic inference 
process is: 
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(1) Input 0x ; 
(2) Fuzzifying 0x  in each fuzzy proposition to get the fire strength of each rule: 

nixAi ...1),( 0 = ; 
(3) Calculating the output of each rule by nizCxAzC iii ...1),()()( 0

' =⇒= ; 
(4) Calculating the overall output by 

)(...)(...)( ''
121 zCzCCCCzC nn ∪∪=∪∪∪= . 

 
We illustrate the fuzzy reasoning process with Mamdani’s implication in Figure 2.7. 
Suppose the rule number n=2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 Reasoning process  
based on Mamdani implication 

 
 
 
The output in the process is a fuzzy set. In many applications, the fuzzy set should be 
transformed into a crisp value by a defuzzifier: 
 

)(0 Crdefuzzufiez =  
 
The defuzzification is a process to select a representative element from the fuzzy output 
C. The most defuzzification operators are center-of-area and mean-of-max (Figure 2.8). 
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Figure 2.8 Center of area and mean of max 
 
 

2.4.5 Fuzzy reasoning methods 

In general, the task of fuzzy reasoning is to get the output from the input based on the 
rule base: 

00

2222

1111

:
,:

...
,:
,:

yisyandxisxFact
CiszthenBisyandAisxifR

CiszthenBisyandAisxifR
CiszthenBisyandAisxifR

nnnn

 

Consequence: Cisy  
 
There are many methods for deriving the output C. In the following, the Mamdani 
method and the Tsukamoto method are described. For simplicity, let n=2. 
 
A. The Mamdani method (Mamdani 1976): 

(1) The firing levels of each rule, denoted by 2,1, =iiα ; are computed by 
))(),(min( 01011 yBxA=α  and ))(),(min( 02022 yBxA=α ; 

(2) The individual rule output is ))(,min()( 11
'

1 zCzC α=  and 
))(,min()( 22

'
2 zCzC α= ; 

(3) The overall output is computed by the sup-min composition:   
))(,min())(,min()()()( 2211

'
2

'
1 zCzCzCzCzC αα ∨=∨= . 

 
The process can be illustrated by Figure 2.9: 
 
The crisp z can be calculated by using a defuzzifier.  
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Figure 2.9 Mamdani reasoning method 
 
 
 
 
B: The Tsukamoto method: 
 

(1) The fire level of each rule is calculated by ))(),(min( 01011 yBxA=α  and 
))(),(min( 02022 yBxA=α ; 

(2) The individual crisp outputs of 1z  and 2z  are computed from the equations 
)(),( 222111 zCzC == αα ; 

(3) The overall crisp action is calculated by the center of area and is expressed as 

21

2211
0 αα

αα
+
+

=
zz

z  

 

2.5 Fuzzy topology 

2.5.1 Fuzzy topological space 

Fuzzy topology is constructed based on fuzzy (sub)sets. It is an extension of general 
(crisp) topology and has several definitions. The notion introduced here is based on the 
definition proposed by Chang (1968). 
 
Let A be a fuzzy subset of an ordinary (crisp) set X, and )(X℘  be the fuzzy power set 
of X. )(X℘⊆∀δ  if 

δ⊆∅ X,  
δδ ∈∈∀ iii AA U,  
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δδ ∈∩∈∀ VUVU ,,  
Then δ is called a fuzzy topology on X (i∈I is an index set). ),( δX  is called a fuzzy 
topological space (or fts for short). When there is no confusion, we write simply X 
instead of ),( δX  and write crisp (general) topological space as cts for short. Every 
element of δ is called an open (fuzzy) set in ),( δX . A set A is a closed (fuzzy) set if its 
complement cA  is open. The union of all open sets contained in A is the interior of A, 
denoted by oA . oA  is the largest open set contained in A. The intersection of all the 
closed sets containing A is called the closure of A, denoted by −A . −A  is the smallest 
closed set containing A. The exterior of A is the complement of −A  and is denoted by 

eA .  Obviously eA  is an open set.  An open set A is called regular open if it is 
equal to the interior of the closure of A. A closed set A is called regular closed if it is 
equal to the closure of the interior of A. 
 
A fuzzy set in X is called a fuzzy point iff it has the membership degree 0 for all Xy∈  
except one, say Xx∈  (Wong 1974). We denote a fuzzy point by )10( ≤< λλx , i.e., 
the value at x is λ, and call the point x its support. λ is the height of λx . The fuzzy 
point λx  is contained in a fuzzy set A or belongs to A, denoted by Ax ∈λ  iff 

)(xA≤λ . )(xA  denotes the membership degree of x to A.  
 
Let ),( 1δX , ),( 2δX  be two fuzzy topological spaces. ),( 1δX  is said to be finer 
than ),( 2δX , or ),( 2δX  is said to be coarser than ),( 1δX  if 21 δδ ⊃ . 
 
Let Y be a crisp subset of fts ),( δX . Y is called the subspace of ),( δX  if a fuzzy 
subset A of Y is open in Y if and only if UXA ∩=  for some open subset U of X.   
 
In general the definitions of fts and cts are the same in their forms. The main difference 
between fts and cts is that an fts contains fuzzy sets but a cts contains only ordinary 
(crisp) subsets. The other differences between fts and cts are caused by the differences 
between the properties of fuzzy sets and crisp sets. 
 
Between fuzzy sets A and B, Propositions 2.1, 2.2 and 2.3 on crisp sets A and B still 
hold (Liu and Luo 1997): 
 
Proposition 2.7 Let A, B be two fuzzy sets in fts X. 

(1) AAo ⊆ , ooo AA =)( ; 
(2) oo BABA ⊆⇒⊆ ; 
(3) ooo BABA ∩=∩ )( , ooo BABA ∪⊇∪ )( . 

According to Proposition 2.7(3), the intersection of two regular open sets is still regular 
open.  
 
Proposition 2.8 Let A, B be two fuzzy sets in fts X. 

(1) −⊆ AA , −−− = AA )( ; 
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(2) −− ⊆⇒⊆ BABA ; 
(3) −−− ∩⊆∩ BABA )( ， −−− ∪=∪ BABA )( . 

According to Proposition 2.8(3), the union of two regular closed sets is still regular 
closed.  
 
Proposition 2.9 Let A be a fuzzy set in fts X. coccoc AAAA == −− , . 
 
However, Proposition 2.4 does not hold in general. For example, let },,,{ dcbaX = , 

}},{},{,,{ 2.02.02.0 baaX ∅=δ . Then δ  is a fuzzy topology on X. Suppose }{ 3.0aA = , 
i.e., A is a set of a fuzzy point. Then }{ 2.0aAo = ; },,{ 8.0 cbaAAXA ocooc ==−= ; 

},,{ 7.0 cbaAXAc =−= ; },,{ 8.0 cbaAc =− ; },,{}{ 8.08.03.0 cbaaA == −− ; 
},{ 2.02.0 baA c =− . Obviously, coccoc AAAA == −− , . This example shows Proposition 2.9 

holds. But XcbacbaaAA c ≠=∪=∪ },,{},,{}{ 7.07.03.0 .  
Furthermore, XcbacbaaAA oco ≠=∪=∪ },,{},,{}{ 8.08.02.0  and  

XcbabacbaAA c ≠=∪=∪ −− },,{},{},,{ 8.08.02.02.08.08.0  
 
This problem is caused by the excluded-middle law since it does not hold in fuzzy set 
theory. The properties of the fuzzy boundary of a fuzzy set will be discussed in Chapter 
3.  
 

2.5.2 Neighborhood and quasi-neighborhood 

A fuzzy set A in ),( δX  is called a neighborhood of fuzzy point λx  if there exists a 
δ∈B  such that Bx ∈λ  and AB ⊆  (Pu and Liu 1980). A fuzzy point oAx ∈λ  iff 

λx  has a neighborhood contained in A. Obviously, a fuzzy point oAx ∉λ  iff every 
neighborhood of λx  is not contained in A. A fuzzy point λx  is called quasi-coincident 
with A, denoted by Aqx ˆ

λ , iff )(xAc>λ  or 1)( >+ xAλ . Call fuzzy set A 
quasi-coincident with B if )()( xBxA c>  or 1)()( >+ xBxA , Xx∈∀ . A fuzzy set A 
in ),( δX  is called a quasi-neighborhood of λx  if there exists a δ∈B  such that 

Bqx ˆλ  and AB ⊆ . A fuzzy point −∈ Axλ  iff each quasi-neighborhood of λx  is 
quasi-coincident with A. 
 
Compared with the neighborhood of a crisp topological space, it can be perceived that a 
fuzzy topological space possesses more neighborhood structures. For further discussion 
we define pan-neighborhood P of fuzzy point λx  if there exists a δ∈B  such that 

PB ⊆  and ∅≠∩ Bxλ  (Tang and Kainz 2002). Obviously )()( xAxA −=  iff there 
is a pan-neighborhood δ∈P  of x such that 1)()( =+ xPxA ; )()( xAxA o=  iff there 
is a P of x such that )()( xPxA = .  
 
These neighborhood concepts are illustrated in Figure 2.10. Let X be a closed interval 
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],[ 21 cc  of R; U is defined as an open set of X. },,{ XU∅  is a fuzzy topology on X. U 
is a neighborhood of fuzzy point ax , cU  is a quasi-neighborhood of fuzzy point by , 
U is a pan-neighborhood of cz . 
  
 
 
 
 
 
 
 
 
 

Figure 2.10 Neighborhood, quasi-neighborhood and pan-neighborhood 
 
 

2.5.3 Separation and connectedness 

Two fuzzy sets A and B in ),( δX  are said to be separated if there exist δ∈VU ,  
such that BVAU ⊇⊇ ,  and ∅=∩=∩ AVBU . Two fuzzy sets A and B in ),( δX  
are said to be Q-separated if there exist closed sets H, K such that BKAH ⊇⊇ ,  and 

∅=∩=∩ AKBH  (Pu and Liu 1980).   
 
In general, Q-separation and separation do not imply each other. However, we have: 
 
Proposition 2.10 Let A and B be two crisp sets in an fts, then A and B are separated iff 
they are Q-separated. 
 
A fuzzy topological space X is called connected if there is no separated C and D, such 
that DCX ∪=  (Liu and Luo 1997). We define the connectedness of a fuzzy set by 
separation and Q-separation. A fuzzy set A is said to be open-connected if there is no 
separated C and D, such that DCA ∪= . A fuzzy set A is said to be closed-connected 
if there is no Q-separated C and D, such that DCA ∪= . A fuzzy set is said to be 
double-connected if it is both open-connected and closed-connected.  
 

2.5.4 Fuzzy homeomorphism and fuzzy topological relation 

Let YXf →:  be an ordinary mapping between X and Y, and ),( δX , ),( σY  be fts. 
The fuzzy mapping from fts ),( δX  to fts ),( σY  and its inverse mapping are defined 
as (Chang 1968): 

XxYBxfBxBfXYf
YyXAyxfXxxAyAfYXf

∈℘∈=→

∈℘∈=∈=→
←←

→→ ∨
),()),(())((),,(),(:

),(},)(,:)({))((),,(),(:
δσ
σδ  

 
Call ),(),(: σδ YXf →→  (fuzzy) continuous if its inverse mapping 

1 

0 

U Uc 

c2  
R 

c1 

xa yb 

zc 

I 
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),(),(: δσ XYf →←  maps every open subset in ),( σY  to an open subset in ),( δX .  
Call it open if it maps every open subset in ),( δX  to an open subset in ),( σY . 

),(),(: σδ YXf →→  is called (fuzzy) homeomorphism if it is bijective, continuous and 
open. Fuzzy homeomorphisms are union preserving and crisp subset preserving (Liu 
and Luo 1997). The properties of a fuzzy set that are invariant under fuzzy 
homeomorphisms are (fuzzy) topological properties (or topological invariants). 
 
Let R be a binary fuzzy relation R from fuzzy set XA⊆  to fuzzy set XB ⊆  on 
fuzzy topological space X. R is called a fuzzy topological relation from A to B on X if R 
keeps  topological invariants under a fuzzy homeomorphism. If ),( baRµ  

),( BbAa ∈∈  takes only value 0 and 1, then R is crisp, otherwise it is fuzzy.  
 

2.5.5 T0, T1, T2, regular and normal space 

The following notions are summarized from Liu and Luo (1997). Let ),( δX  be a 
fuzzy topological space. ),( δX  is called quasi-T0 if for every two distinguished points 

σλ xx ,  with the same support x, there exists a quasi-neighborhood A, such that 

)(ˆ xAqx c
¬

λ  (i.e., )(xAc≤λ  or 1)( ≤+ xAλ ), or a quasi-neighborhood B, such that 

)(ˆ xBqx c
¬

σ  (i.e., )(xB c≤σ  or 1)( ≤+ xBσ ). ),( δX  is called sub-T0 if for two 
distinguished ordinary points yx, , there exists a quasi-neighborhood A and ]1,0(∈λ , 

such that )(ˆ xAqx c
¬

λ , or a quasi-neighborhood B, such that )(ˆ xBqx c
¬

λ . ),( δX  is 
called 0T  if for every two distinguished points σλ yx , , there exists a 

quasi-neighborhood A, such that )(ˆ xAqx c
¬

λ , or a quasi-neighborhood B, such that 

)(ˆ xBqx c
¬

σ . Every 0T  space is both quasi-T0 and sub-T0. 
 
Let ),( δX  be an fts. ),( δX  is called 1T  if for every two distinguished points 

σλ yx , , there exists a quasi-neighborhood A of λx  such that Aqy
¬

ˆ
σ . Obviously, every 

1T  space is 0T . 
 
Let ),( δX  be an fts. ),( δX  is called 2T  if, for every two distinguished points 

)(, yxyx ≠σλ , there exist quasi-neighborhoods A, B such that ∅=∩ BA . In general a 

2T  space cannot imply 0T  or even quasi- 0T . 
 
Let ),( δX  be an fts. ),( δX  is called regular (or 3T ) if for every open set U, there 
exists δ⊆Α , such that U=AU  and UA ⊆−  for every A∈A . ),( δX  is called 
p-regular (or p-T3 ) if, for every closed set V and every point λx , )(supp Vx∉ , there 
exists quasi-neighborhood A of λx  and B of V such that ∅=∩VU . 3T  and p-T3 
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do not imply each other. Every p-T3 space is 2T . 
  
Let ),( δX  be an fts. ),( δX  is called normal (or 4T ) if, for every closed set C and 
every open set A such that AC ⊆ , there exists an open set B such that ABC ⊆⊆ . 

),( δX  is called p-normal (or p-T4) if, for every two closed subsets A and B such that 
∅== )(supp)(supp BA , there exist quasi-neighborhood U of A and 

quasi-neighborhood V of B such that ∅=∩VU .  
 
The relationships between these fuzzy topological spaces (Ti, i=0,1,2,3,4) are illustrated 
in Figure 2.11.  
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 Relationships between fuzzy topological spaces 
 

2.5.6 Induced space 

In Section 2.5.4 we have seen that a fuzzy topological space has more complicated 
structures than a crisp topological space. In order to show the relations between fuzzy 
topological space and crisp topological space, we introduce three fuzzy topological 
spaces: the stratified space, the weakly induced space and the induced space (Liu and 
Luo 1997). 
 
Let ),( δX  be an fts. δ  is called stratified if δ  contains every layer of X, i.e., for 
every ]1,0[∈α , δα ∈X . ),( δX  is called a stratified topological space if δ  is 
stratified. Lowen (1976) defined a fuzzy topology on X, replacing δδ ∈∈∅ X,  by 
every level δα ∈X .   
 
Let ),( δX  be an fts. For every δ∈A , )supp(A  is a crisp set. Let 

}:)supp({][ δδ ∈= AA , then ])[,( δX  forms a crisp topological space.  
  
Let ]1,0[  be the unit interval. The crisp topology that is generated by subsets 

}10:),0{[ ≤≤= aaA  is called upper topology on ]1,0[ . The crisp topology that is 
generated by subsets }10:]1,{( ≤≤= aaA  is called lower topology on ]1,0[ . The 
topology that is generated by subsets }10:),{( ≤<≤= babaA  is called interval 
topology on ]1,0[ .  Let ),( δX  be a crisp topological space. A mapping 

Quasi-T0   Sub-T0 

T0 
 T1 

T2 T3 

p-T3 

T4 
p-T4 



Chapter two 

 44 

]1,0[: →Xf  is called upper semicontinuous if f is continuous for the upper topology 
on ]1,0[ . A mapping ]1,0[: →Xf  is called lower semicontinuous if f is continuous 
for the lower topology on ]1,0[ . A mapping ]1,0[: →Xf  is continuous iff f is both 
upper semicontinuous and lower semicontinuous.  
  
Let ),( δX  be an fts. δ  is called weakly induced fuzzy topology on X if every δ∈U  
is a lower semicontinuous mapping from ])[,( δX  to ]1,0[ . δ  is called induced fuzzy 
topology on X if δ  is exactly the family of all the lower semicontinuous mappings 
from ])[,( δX  to ]1,0[ .  
 
Between these topological spaces, the following propositions hold: 
 
Proposition 2.11 Let ),( δX  be an fts. Then ),( δX  is induced iff ),( δX  is both 
stratified and weakly induced.  
 
Proposition 2.12 Let ),( δX  be an fts, A be a fuzzy set of X , αA  be a α-cut of fuzzy 
set A, and oA )( α  be the open set of αA  in ])[,( δX .   

(1) ),( δX  is stratified iff )}(:))()(({
10

XAxA o ℘∈∧⊇
≤<
∨ αα

αδ ;  

(2) ),( δX  is weakly induced iff )}(:))()(({
10

XAxA o ℘∈∧⊆
≤<
∨ αα

αδ ; 

(3) ),( δX  is induced iff )}(:))()(({
10

XAxA o ℘∈∧=
≤<
∨ αα

αδ . 

 
Proposition 2.13 Let ),( δX  be an induced fts, A be a fuzzy set of ),( δX , αA  be an 
α-cut of fuzzy set A, and oA )( α  be the open set of αA  in ])[,( δX .   

(1) ))()((
10

xAA −

≤<

− ∧= ∨ αα
α ; 

(2) ))()((
10

xAA oo
αα

α ∧=
≤<
∨ . 

 
Proposition 2.14 Let ),( δX  be an induced fts. ),( δX  is connected iff ])[,( δX  is 
connected. 
 
We use an example to show these spaces. Let ),( dR  be a crisp Euclidean space, and 

),( yxD o =  ( yx < ) be an open interval of R. Let R~  be the extension of R with fuzzy 
points )10( ≤< ax a . Define a fuzzy open interval D between 

)1,0,(, ≤<< bayxyx ba  in R~ : }10:{),( ≤<<<== candyzxzyxD cba
o . The 

distance between ba yx ,  is defined as |)supp()supp(| ba yx − . Let us construct an fts 

),~( γR  where }~:~{ oD⊆= ρργ , i.e., the elements of γ are fuzzy open intervals. 
),~( γR  is the stratified space of ),( dR  since each level of R is contained in ),~( γR . 

However, it is not weakly induced. In ),( dR , every closed interval ],[ yxD =  is 
closed and not open. Every open interval ),( yxD o =  is open but not closed. In 
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),~( γR , every fuzzy closed interval 1,0],,[ ≤<= bayxD ba  is closed. According to 
the definition of fuzzy topology, the arbitrary intersection of closed sets is still closed. 

Therefore, ),(]),[(lim)(lim
0,0, babababa

yxyxD ==
→→

II  is also closed (Figure 2.12). Let 

),min( bac = . Then the support of the closed set ),( ba yx  will be ),(),( yxyx cba = , 
which is an open interval in ),( dR . However, since ),( yx  cannot be closed in 

),( dR . Therefore, ),~( γR  is not weakly induced space of ),( dR . ),~( γR  is not 
connected since it can be the union of two closed intervals.  
 
 
 
 
 
 
 
 
 
 

Figure 2.12 Intersection of fuzzy closed intervals  
 

2.5.7 Relationships between crisp spaces and induced spaces 

We show the conclusions between stratified, weakly induced, induced topological 
spaces and crisp topological spaces with consideration of Ti spaces.  
 
Proposition 2.15 

(1) Every stratified space is quasi-T0. If ])[,( δX  is 0T , then ),( δX  is sub-T0. 
If ),( δX  is weakly induced and sub-T0, then ])[,( δX  is 0T . Every induced 
space ),( δX  is 0T  iff ])[,( δX  is 0T .  

(2) If ),( δX  is weakly induced and 1T , then ])[,( δX  is 1T . Let ),( δX  be a 
stratified space. If ])[,( δX  is 1T  then ),( δX  is 1T . Every induced space 

),( δX  is 1T  iff ])[,( δX  is 1T . 
(3) Let ),( δX  be a weakly induced topological space. Then ),( δX  is 2T  iff 

])[,( δX  is 2T . Let ),( δX  be an induced space. Then ),( δX  is 2T  and 

1T  iff ])[,( δX  is 2T .  
(4) Let ),( δX  be a weakly induced space. If ),( δX  is p-regular, then 

])[,( δX  is regular. Every induced space ),( δX  is regular or p-regular iff 
])[,( δX  is regular.  

(5) If ),( δX  is weakly induced and ])[,( δX  is normal, then ),( δX  is 
p-normal. If ),( δX  is weakly induced and normal, then ])[,( δX  is normal. 
Let ),( δX  be an induced space. Then ),( δX  is normal or p-normal iff 

])[,( δX  is normal. 

x
 

y
 

1.0 

0 

],[ ba yx
 

I 

R 
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Figure 2.13 Relationships between difference topological spaces 
 
The relations between crisp spaces and fuzzy stratified, weakly induced and induced 
spaces are illustrated in Figure 2.12,         stands for A implies B.         stands 
for two spaces imply each other.  
 

2.5.8 Fuzzy pseudo-metric space 

A mapping ),0[)()(: ∞→℘×℘ XXP  is called pseudo-metric on X if 
Xvuyx dcba ∈∀ ,,, , P satisfies the following conditions: 

(1) If ba yx ≥ , then 0),( =ba yxP ; 

])[,( δX  is T0  
 
 
 
 
 
 
 
 
 

 ])[,( δX  is T1 
 
 
 
 
 
 

 ])[,( δX  is T2 
 
 
 
 

   ])[,( δX  is T3

 ])[,( δX  is T4

   ),( δX  is stratified  ),( δX  is weakly induced 

 ),( δX  is induced 

Quasi-T0  ),( δX  is sub-T0 
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(2) ),(),(),( bccaba yuPuxPyxP +≤ ; 
(3) ),(),( cdxxyyda yxPyxP

adbc ≤≤
∧∨= ; 

(4) cu∃ , cc uqx ˆ , ruyP cb <),( ⇔ dv∃ , db vqy ˆ , rvxP da <),( . 
 
Call ),( PX  a fuzzy pseudo-metric space. )(XA ℘∈∀ , defines a mapping 

)()(:ˆ XXf r ℘→℘  for every 0>r : 

}),(,:{)(ˆ ryzPAzyAf bccbr <∈∃=∨ .  
 
Call }0:ˆ{ >= rfD rP  the associated neighborhood mappings of P. The topology 
generated by P is denoted by )(Pδ . If ),( PX  is a fuzzy pseudo-metric space, then 

))(,( PX δ  is normal.  
 
A fuzzy pseudo-metric space holds less properties than a metric space in the topological 
sense. For example, we can define a pseudo-metric in R~  such that: 

(1) If ba yx ≥ , then 0),( =ba yxP ; 
(2) ),(),(),( bccaba yuPuxPyxP +≤ ; 
(3) If ∅≠∅≠ BA , , then ||),( yxyxP da −= ; 
(4) cu∃ , cc uqx ˆ , ruyP cb <),( ⇔ dv∃ , db vqy ˆ , rvxP da <),( . 

 
Then an associated neighborhood of )0( >axa  is )0}(|:|{ ><−= bryxyB b . It is a 
fuzzy open interval. It will generate a fuzzy topological space ),~( dR , discussed in 
Section 2.5.6. According to the previous analysis, it is not an induced space of R since 
every fuzzy open interval is also closed.   
 

2.5.9 Induced fuzzy Euclidean space 2~R  

We define a fuzzy topological space ),~( 2 δR  such that it is induced from the Euclidean 
space 2R  with usual topology. If there is no confusion, we simplify it as 2~R . In 2~R , 
every fuzzy point ),( ba yxp  is closed, since every ),( yxp  in 2R  is closed. 2~R  is 

43210 ,,,, TTTTT  since it is induced and 2R  is normal. 2~R  is also connected.  
 
Define a fuzzy Euclidean distance between two fuzzy points ),( yxpa  and ),( vuqb  in 

2~R  by 22 )()(),( vyuxqpd ba −+−= . Define a fuzzy open disk o
pD  of a fuzzy 

point ),( yxpa  in 2~R  by }10,),(:{ ≤<<= brqpdqD bab
o
p . Define a fuzzy closed 

disk pD  of a fuzzy point ),( yxpa  in 2~R  by }10,),(:{ ≤<≤= brqpdqD babp .  
 
In general a fuzzy open disk may be not open in 2~R . Nor may a fuzzy closed disk be 
closed. For example, a fuzzy closed disk depicted in Figure 2.13 is not closed. In Figure 
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2.14 the membership values of a fuzzy closed disk are shown in the I axis.  
 
 
 
 
 
 
 
 
 

Figure 2.14 A fuzzy closed disk is maybe not closed in 2~R  
 
According to the definition of the induced space and lower semicontinuity and upper 
semicontinuity, in 2~R  a fuzzy open disk is open iff it is a lower semicontinuous 
mapping from 2R  to [0,1]. A fuzzy closed disk is closed iff it is an upper 
semicontinuous mapping from 2R  to [0,1]. In the examples of Figure 2.15, A is an 
open set, and B is a closed set.  
 
 
 
 
 
 
 
 
 
 

Figure 2.15 Open set and closed set in 2~R  
 
 
In general, the interior and the closure of a fuzzy set A in 2~R  can be calculated by 
Proposition 2.13:  

(1) ))()((
10

xAA −

≤<

− ∧= ∨ αα
α ; 

(2) ))()((
10

xAaA oo
αα

∧=
≤<
∨ . 
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Chapter Three      

Topological Relations 

in a Crisp Fuzzy Topological Space 

 
 
 
 

3.1 Introduction 
How to model spatial features is an essential question in GIS. An important issue is to 
understand the relationships between spatial features. Of all the relationships, 
topological relations play a fundamental role in GIS modeling. A query such as “who 
are my neighbors?” belongs to this province. Several approaches have been proposed 
for identifying topological relations between crisp spatial objects. Corbett (1979) 
introduced the algebraic topological structure for cartographic modeling. Allen (1983) 
identified 13 topological relations between two temporal intervals. The breakthrough on 
topological relations between spatial objects was made by the well-known 4-intersection 
and 9-intersection approaches proposed by Egenhofer and Franzosa (1991). A lot of 
research has been done based on this aspect (Egenhofer and Herring 1990a, 1990b, 
Herring 1991, Egenhofer et al. 1994a, 1994b, Egenhofer and Franzosa 1994, van 
Oosterom 1997, Molenaar 1996, Chen et al. 2001). On the other hand, Kainz et al. 
(1993) investigated the topological relations from the perspective of poset and lattice 
theory. Randell et al. (1992) described topological relations by using their RCC (Region 
Connection Calculus) theory, which is based on logic. 
 
However, spatial objects are not always crisp. There are many fuzzy objects in reality, 
such as downtown area, forest and grassland. Fisher (1996) provides a good example of 
fuzzy objects by analyzing land cover classification on satellite images. Since Zadeh 
introduced fuzzy set theory in 1965, it has been widely researched theoretically, and 
successfully applied in many fields such as automatic control. A lot of research has been 
done using fuzzy mathematics for GIS models, for example Burrough (1989), Cheng et 
al. (1997), Brown (1998), and Cross and Firat (2000).   
 
For GIS applications, understanding the topological relations between fuzzy spatial 
objects is vital when modeling fuzzy spatial objects. In this respect, several models have 
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been proposed for modeling topological relations between fuzzy spatial objects 
(Clementini and Di Felice 1996, Cohn and Gotts 1996, Cohn et al. 1997, Dijkmeijer and 
Hoop 1996, Molenaar 1996, Zhan 1997, Winter 2000). Two of them, namely the 
algebraic model and the egg-yolk model, are described in detail for theoretic fuzzy 
modeling. The former model, proposed by Clementini and Di Felice (1996), is based on 
algebraic topology. In this model, a fuzzy region is defined as the union of two parts: the 
core region with a broad boundary (Figure 3.1). The definition of a fuzzy region is also 
discussed by Schneider (1999). The interior and the exterior of the region are assumed 
as open sets, while the broad boundary is a closed set. By using the 9-intersection 
approach, 44 different relations are identified in 2R .   
 
 
 
 
 
 

Figure 3.1 A region with a broad boundary  
(Clementini and Di Felice 1996) 

 
The egg-yolk model was introduced by Cohn and Gotts (1996) and Cohn et al. (1997). 
In its simplest case, a region (egg) is composed of the inner subregion (yolk) and the 
outer subregion (white). The egg is the maximal extent of a vague region and the yolk is 
its minimal extent, while the white is the area of indeterminacy. Figure 3.2 shows the 
primitives of this model. Based on the RCC, 46 relations are identified by using 
so-called limits on the possible “complete crispings” or precise versions of a vague 
region. Any acceptable complete crisping must lie between the inner and outer limits of 
the defined yolk and egg.  
 
 

 
 

 
 

Figure 3.2 Primitives of the egg-yolk model 
 (Cohn and Gotts 1996) 

 
The above two models identify the topological relations between two fuzzy regions. 
Although the egg-yolk model is based on logic, it can also be perceived that the 
connection that the model adopted for the relations has the characteristics of topology 
(the connection holds when closures of two crisp regions share points). The algebraic 
model directly assumes the open set and the boundary set to be the two parts of a fuzzy 
region algebraically. Since an ordinary topological space does not allow the existence of 
any fuzzy set, it is impossible to imbed any fuzzy set in any ordinary topological space. 
In this sense the open set in the algebraic model is an algebraic assumption of a fuzzy 
region in the ordinary topological space.  
 
An alternative way to identify the topological relations between fuzzy sets is to analyze 
them in fuzzy topological space. A question then arises of how to identify the 

Interior 
Boundary 
Exterior 
 

 YolkWhite 
Egg 
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topological relations between fuzzy sets in fuzzy topological space. The 9-intersection 
approach is well-known for the identification of the topological relations between crisp 
regions in the ordinary topological space. Is it possible to extend this approach for the 
identification between fuzzy spatial objects?  
 
This chapter aims at identifying the topological relations between simple fuzzy regions 
in a special fts (Tang et al. 2003a). After discussions on the 9-intersection approach, a 
possible way to extend this approach is established in a crisp fuzzy topological space. 
The structure of this chapter is as follows. Section 3.2 selects the fuzzy boundary for 
GIS applications, based on several definitions of fuzzy boundary in fuzzy topological 
space. Section 3.3 analyzes the 9-intersection approach that will be updated in the thesis. 
Section 3.4 introduces a crisp fuzzy topological space and reveals some properties of 
this space. Section 3.5 introduces three intersection matrices in this space. Section 3.6 
introduces the definition of a simple fuzzy region in this space. Section 3.7 identifies the 
topological relations between two simple fuzzy regions. Conclusions and discussions 
complete this chapter. 
 
 

3.2 Fuzzy boundary 

3.2.1 Definitions of fuzzy boundary 

In GIS one of the most important notions we are concerned with is the fuzzy boundary. 
In fuzzy topology, several definitions have been proposed (Warren 1977, Pu and Liu 
1980, Wu and Zheng 1991, Cuchillo-Ibáñez and Tarrés 1997). Let A be a fuzzy set in fts 

),( δX : 
 

(1) Warren (1977): The fuzzy boundary of a fuzzy set A is the infimum of all 
closed fuzzy sets D in X with the property )()( xAxD −≥  for all Xx∈  for 
which 0))(( >∩ −− xAA c . 

(2) Pu and Liu (1980): The fuzzy boundary of a fuzzy set A is the intersection of 
the closure with the closure of the complement of a fuzzy set, i.e., 

−− ∩=∂ cAAA .  This form is identical to the boundary defined in the crisp 
space. 

(3) Cuchillo-Ibáñez and Tarrés (1997): The fuzzy boundary of a fuzzy set A is the 
infimum of all closed fuzzy sets D in X with the property )()( xAxD −≥  for 
all Xx∈  for which )()( xAxA o>− . 

 

3.2.2 Selection of fuzzy boundary 

In the cts, the boundary ∂A of a subset A is the intersection of the closure of A with the 
closure of the complement of A. It has the following properties: 
 
Proposition 3.1 In the cts, the boundary of a subset holds the following properties: 

(1) It is closed; 
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(2) It is the difference between the closure and the interior of the set; 
(3) It is the intersection of the closure with the closure of the complement of the 

set. 
 
It can be easily seen that the above definitions of fuzzy boundary are equivalent to the 
boundary of a crisp subset in the cts if all membership functions of the fuzzy sets are 
restricted to being characteristic functions. In the fts, however, these three properties 
cannot hold simultaneously for the fuzzy boundary, i.e., oc AAAA −=∩ −−−  may not 
hold. This is due to ∅≠∩ cAA  in fuzzy set theory.   
 
It is necessary to select one of the definitions for GIS applications. Let us call the 
boundaries defined by Warren, Pu and Liu, and Cuchillo-Ibáñez and Tarrés boundary I 

)( IA∂ , boundary II )( IIA∂  and boundary III )( IIIA∂ , respectively. These definitions 
meet different properties of the three properties listed in Proposition 3.1. Boundary I 
satisfies Proposition 3.1(1), boundary II satisfies (1) and (3), and boundary III satisfies 
(1). Besides this, the following proposition is obvious and shows the relationships 
between these definitions. 
 
Proposition 3.2 Let A be a fuzzy set in fts ),( δX . Then   

(1) o
III

o
I AAAAA ∪∂=∪∂=−  

(2) o
II AAA ∪∂⊇−  

(3) IIII AAA ∂⊇∂⊇−   
(4) III AA ∂⊇∂  

 
The difference between the three boundaries can be illustrated by an example. Let us 
construct an fts ),~( δR  that is induced from the Euclidean space R, i.e., the elements of 
δ  are exactly the family of all the lower semicontinuous mappings from R to ]1,0[ . A 
fuzzy open interval: yxbayxD ba

o <≤<= ,1,0),,(  is open if it is a lower 
semicontinuous mapping from R to [0,1] . It can be calculated by Proposition 2.13. A 
fuzzy closed interval ( yxbayxD ba <≤<= ,1,0],,[ ) is closed if it is an upper 
semicontinuous mapping from R to [0,1] ).  This space is different from the space 

),~( γR  that is defined in Section 2.5.6, in that in ),~( δR  some fuzzy closed intervals 

defined in ),~( γR  are not closed in ),~( δR , and in ),~( δR  some fuzzy open intervals 

defined in ),~( γR  are not open in ),~( δR . In Figure 3.3 ]2,2[ baD −=  is closed in 

),~( δR  and ),~( γR . ]2,2[' baD −=  is closed in ),~( γR  but it is not closed in ),~( δR . 
The reason is explained in Section 2.5.6. 
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Figure 3.3 Fuzzy closed intervals in ),~( δR  
 
Suppose there is a fuzzy closed interval A in fts ),~( δR  ( 0>ε ):  
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In ),~( δR , A is closed since it is an upper semicontinuous mapping from R to ]1,0[ . 
The boundaries are: 
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Figure 3.4 illustrates these boundaries of A. Boundary I is shown by red dashed lines 
(with linked dots), boundary II is marked with green lines (with linked dots), and 
boundary III is marked with black dots. 
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Figure 3.4 The different boundaries of fuzzy closed disk in ),~( δR  
 
In GIS applications, an intuitive understanding of fuzzy objects considers a point whose 
membership degree is less than 1 to be located near or at the rim of the object. The 
algebraic model (Clementini and Di Felice 1996) defines the broad boundary in the cts 
in this way. To meet such an intuitive condition, boundary I is the most suitable for GIS 
applications. According to Proposition 3.2(3) and (4), this boundary is greater than all 
other boundaries. This is reasonable because the other boundaries may not include a 
point whose membership degree is less than 1. 
 

3.2.3 Properties of fuzzy boundary 

The above example illustrates that Warren’s definition is most suitable in GIS 
applications. We adopt his definition in this thesis, and denote it by A∂ . Several 
propositions related to the fuzzy boundary are listed for later discussions (Warren 1977). 
 
Proposition 3.3 Let A be a fuzzy set in fts ),( δX . 

(1) A∂  is a closed set, and −⊆∂ AA ; 
(2) crispandclosedopenisAiffA ,∅=∂ ; 
(3) AAAAA o ∂∪=∂∪=− ; 
(4) oAAAXAA −⊇−∩⊇∂ −−− )( ; 
(5) AAAo ∂⊆∂∪∂ − )()( ; 
(6) AA ∂⊆∂∂ )( . 

 
It is obvious that the boundary of the empty set and of the universe is empty according 
to Proposition 3.3(2).  
 

3.3 Analysis of existing 9-intersection approach 

3.3.1 9-intersection approach 

The 9-intersection approach is derived from the cts for crisp sets. In classical set theory, 
between subset A and its complement cA  we have XAAAA cc =∪∅=∩ and . 

1 

0-1-2 1 2 

Membership

x 

Boundary I
Boundary II 

Boundary III 
A
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In the cts, similar properties hold: ∅=∂∩=∂∪ − AAAAA oo and . Furthermore, 
the exterior, the boundary and the interior of a subset in the cts are mutually disjoint. 
These three concepts are called the topological parts of a subset. The 4-intersection and 
9-intersection approaches utilize this property for formalizing topological relations 
between two crisp regions (Egenhofer and Herring 1990a). The former is defined by the 
intersections between the interior and the boundary of two sets. The latter is the 
extension of the 4-intersection in which the exterior is added into the intersection 
matrix. 
 
9-intersection matrix in crisp topological space: Let A, B be two subsets in cts X. 
  

















∩∂∩∩
∩∂∂∩∂∩∂
∩∂∩∩

=
eeeoe

eo

eoooo

BABABA
BABABA
BABABA

BAI ),(9
                    (0) 

 
By using the 4-intersection or 9-intersection approach, the relations between spatial 
objects can be identified based on topological properties in the intersections. Define a 
simple region as a regular closed set (that is AAo =− ) where oA  and A∂  are 
connected. Eight relations, disjoint, contains, inside, equal, meet, covers, coveredby and 
overlap, between two simple regions, are identified in 2R  by using the topological 
properties empty and non-empty dichotomy in the intersections (Egenhofer and Franzosa 
1991). 
 

3.3.2 More possible intersections 

The 9-intersection approach adopts two important facts: 
(1) The interior, boundary and exterior of a subset are topological invariants and 

they are mutually disjoint; 
(2) The contents of the intersections between these three topological parts of two 

subsets are topological invariants.  
 
The topological relations can then be identified by examining the topological invariants 
of the intersections. Although there are alternative topological invariants that will derive 
other topological relations (for example, the cardinal number and the dimension), the 
empty/non-empty invariant is the simplest set-oriented topological invariant in the cts.     
 
In the cts, it is possible to generate more disjoint topological parts for a crisp subset. 
Considering the boundary of a subset in the cts, it can be decomposed into disjoint 
subsets such as the boundary of the boundary and the interior of the boundary. Even in 
the connected cts, the interior of the boundary could be a non-empty set. A sufficient 
condition that the interior of the boundary of a subset is empty is that the subset is 
regular closed (This is because if −= oAA , then oco AAA )()( −− ∩=∂  

oco AA −− ∩= co AA −− ∩= ∅=∩⊆ −− cAA .). If the subset is not regular closed, then 
the decomposition of the boundary of the subset is feasible. This property provides the 
possibility of decomposing more topological parts from a subset in the cts. For example, 
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we can consider the four parts of a subset: the interior, the boundary of the boundary, 
the interior of the boundary and the exterior, which are mutually disjoint. If these four 
topological parts are non-empty, then we can derive a 4*4-intersection matrix between 
these parts of two subsets in the cts.  
 
For GIS applications in which crisp subsets are considered, the 9-intersection approach 
is exhaustive in terms of the topological parts for identifying topological relations, 
owing to the assumption that a spatial region is a regular closed set. Under this 
assumption, the interior of the boundary is empty. It is also obvious that the other 
topological parts cannot be further decomposed. So it is not necessary to decompose 
three topological parts into more.   
 

3.3.3 Limitations of 9-intersection approach in fts 

The crisp topological space cannot accommodate any fuzzy set since all subsets should 
be crisp. One way of identifying topological relations between fuzzy sets is to 
accommodate them in an fts. Since in fuzzy set theory the properties 

XAAAA cc =∪∅=∩ and  do not generally hold, correspondingly in an fts 
∅=∂∩=∂∪ − AAAAA oo and  cannot generally hold. The intersections between 

eo AAA ,, ∂  could be non-empty, and the union of these three parts could be not equal to 
X. This leads to the fact that the identification of topological relations based on the 
9-intersection approach will be not unique. For example, for two fuzzy sets BA,  in an 
fts X there is a 9-intersection: 

















∅≠∩∅≠∂∩∅≠∩
∅≠∩∂∅≠∂∩∂∅=∩∂
∅≠∩∅≠∂∩∅=∩

eeeoe

eo

eoooo

BABABA
BABABA
BABABA

 

 
This intersection could be the result where ∅=∂∩∅≠∂∩ BBAA oo and  or 

∅=∂∩∅=∂∩ BBAA oo and .  
 

3.4 A crisp fuzzy topological space 

3.4.1 Introduction and definition 

The problem of the 9-intersection approach in the fts arises because of the 
non-disjointness property of the three topological parts in the fts. To see under what 
condition they will be disjoint, we have the following proposition: 
 
Proposition 3.4 Let A be a fuzzy set in fts ),( δX . Then 

crispisAiffAA oo ∅=∩∂ . 
Proof:  

⇒ If 0)( =xAo , then .1)()( =− − xAX o   
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If 0)( >xAo , then 0)( =∂ xA  since 0))(( =∩∂ xAA o . Since 0)( >− xAo  
and 0))()(( =−∩ −− xAXA oo , thus .0)()( =− − xAX o  So .1)( =xAo  

⇐ Assume that oA  is crisp. If 0))()(( >−∩ −− xAXA oo , then 
)(1)()( xAxAX o −− ≥=− , so )( oAXA −⊆∂ . Hence when 1)( =yAo , 

0)( =∂ yA . 
 
The above proposition reveals that, if and only if the open set of a subset in the fts is 
crisp, will the interior and the boundary of the set then be disjoint. We can then analyze 
the topological relations in a special fuzzy topological space.  
 
Definition 3.5 The fuzzy topological space ),( CX  is called a crisp fuzzy topology 
space (or a crisp fts in short) if all open sets in ),( CX  are crisp.   
 
Under such fts, all closed sets are also crisp; therefore all closures are also crisp. The 
difference between a crisp fts and a cts lies in the fact that the crisp fts allows the 
existence of fuzzy sets while the cts does not. However, in ),( CX , since all open sets 
are crisp, the topology C on X is crisp. The basic properties of ),( CX  are the same as 
cts, as we will show in the following. 
  
Proposition 3.6 The fuzzy boundary of a fuzzy set A in ),( CX  is the intersection of the 
closure of the fuzzy set with the closure of the complement of the fuzzy set: 

−− ∩=∂ cAAA . 
Proof: The definition of the fuzzy boundary can be written as the closure of 

}0))((:{ >∩ −− xAAx c . In ),( CX , 0))(( >∩ −− xAA c  becomes 1))(( =∩ −− xAA c  
and is still a closed set. So AAA c ∂⊇∩ −− . On the other hand, from Proposition 3.3(4), 

−− −∩⊇∂ )( AXAA , so −− ∩=∂ cAAA . 
 
Corollary 3.7 In (X,C), the boundary and the interior of any fuzzy set are disjoint: 

∅=∩∂ oAA . 
Proof:  

oco AAAAA ∩∩=∩∂ −−                             (Proposition 3.6) 
−∩= co AA            (According to Proposition 2.7(1) and 2.8(1), −⊆ AAo ) 
−∩⊆ oco AA        (According to Proposition 2.7(1), AAo ⊆ , then AAoc ⊇ ) 

oco AA ∩=                                               (A is open) 
∅=                                                     (A is crisp)  

In the later proofs, we will simplify the process without showing the propositions.  
 
It also can be easily proven by the above procedure that in ),( CX  the boundary, the 
interior and the exterior of a fuzzy set are mutually disjoint.   
 
In the cts, there is a theorem stating that, if both A and B are open or both are closed, 
then BA −  is separated from AB − . This theorem cannot hold in the general fts. 
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However, in ),( CX , it still holds. Specifically, we have:    
 
Proposition 3.8 In ),( CX , if  AAo ∂,  and eA  of fuzzy set A are not empty, then 

oA  and eA  are Q-separated. 
Proof: Since −=∂∪ AAAo , and AAo ∂, , eA  are all crisp, then ∅=∩− eAA . 
Similarly, −=∂∪ ee AAA , then ∅=∩=∩ −− oocoe AAAA .  
 
Since oA  and eA  are Q-separated and crisp, then oA  and eA  are separated 
according to Proposition 2.10. Then in ),( CX  Q-neighborhood and neighborhood 
imply each other. Therefore we have: 
 
Proposition 3.9 If ),( CX  is connected, then there are no two disjoint open or two 
disjoint closed subsets A, B where XBA =∪ .  
 
Proposition 3.9 reveals that in ),( CX  the open-connectedness and the 
closed-connectedness of a fuzzy set imply each other. Therefore we can just use the 
connectedness of a fuzzy set to replace the open-connectedness and the 
closed-connectedness. 
 

3.4.2 Fuzzy boundary in crisp topological space 

In Section 3.3.2 it is mentioned that in cts the boundary can be decomposed into more 
topological parts. In ),( CX , the boundary of a subset may also have its interior and its 
boundary of the boundary. On the other hand, the interior and the closure of a subset 
also have their boundaries. The following proposition reveals the relationship between 
the boundary of the boundary and the boundary of the interior with the boundary of the 
closure in ),( CX . 
 
Proposition 3.10 The boundary of the boundary of a fuzzy set A in ),( CX  is the union 
of the boundary of the closure and the boundary of the interior of a fuzzy set, i.e., 

)()()( oAAA ∂∪∂=∂∂ − . 
Proof: 

)()()()(
)()()()(
)()()()(

)()()()()()(

oococ

ococooccc

ococccc

ccccccc

AAAAAA
AAAAAAAAAA
AAAAAAAAAA

AAAAAAAAAAA

∂∪∂=∩∪∩=

∩∪∩=∩∩∪∩∩=

∩∂∪∩∂=∪∩∂=∪∩∂=

∪∩∂=∩∩∂=∂∩∂=∂∩∂=∂∂

−−−−−−−

−−−−−−−−−−

−−−−−−−−−−

−−−−−−−−−

 

 
Proposition 3.11  

(1) In ),( CX , the boundary is the union of the interior of the boundary, the 
boundary of the interior and the boundary of the closure of a fuzzy set A: 

)()()( oo AAAA ∂∪∂∪∂=∂ − ; 
(2) In ),( CX , the interior of the boundary and the boundary of the boundary of 
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a fuzzy set A are disjoint: ∅=∂∂∩∂ )()( AA o . 
Proof:  

(1) )()()()()()( ooo AAAAAAA ∂∪∂∪∂=∂∂∪∂=∂=∂ −−  
(2) −−−−−−−−−−−− ∩∩∩=∩∩∩=∂∩∂ cocococo AAAAAAAAAA )()()()(

∅=∩=∩⊆∩∩= −−−−−−−−− ococococo AAAAAAA  
 
In Propositions 3.10 and 3.11, the boundary of the boundary of a fuzzy set is introduced, 
and the boundary can be broken into the interior of the boundary and the boundary of 
the boundary. A natural question arises: “Can we decompose the boundary into more 
topological parts, such as the boundary of the boundary of the boundary and the interior 
of the boundary of the boundary?” We will prove that the boundary of the boundary of a 
fuzzy set A is equal to the boundary of the boundary of the boundary in ),( CX .  
 
Proposition 3.12 In ),( CX , the boundary of the boundary of the boundary is equal to 
the boundary of the boundary of a fuzzy set A: )())(( AA ∂∂=∂∂∂ . 
Proof: −∂∂−∩∂∂=∂∂∂ ))(()())(( AXAA . 
Since −−−−−−−−− ∩∪∪=∂∪∪=∂∂− )())(())(( ococooco AAAAAAAAX ; 
and ooccccococo AAAAAXAXAAX −−−−−−−−−−− ∩=∩=−∪−=∪− )()( ;  
so  

XAAXAAAAAA
AAAA

cocoococo

ococo

=∪−∪∪=∩∪∪⊇

∩∪∪
−−−−−−−−−−−

−−−−−−

))(()()()(
)(

. 

Therefore  )())(()())(( AAXAA ∂∂=∂∂−∩∂∂=∂∂∂ −  
 
Corollary 3.13 In ),( CX , the interior of the boundary of the boundary of a fuzzy set is 
empty: ∅=∂∂ oA))(( . 
 
Corollary 3.13 shows that in ),( CX  the decomposition of the boundary of a fuzzy set 
into the boundary of the boundary and the interior of the boundary that are mutually 
disjoint is exhaustive, since the interior of the boundary of the boundary of a fuzzy set is 
empty. Based on Proposition 3.11(1), it is also obvious that the exterior and the interior 
cannot be decomposed any more in ),( CX .  
 
 

3.4.3 Summary of boundaries in different topological spaces 

We summarize some conclusions about the boundaries in different spaces. In Table 3.1 
),( τX , ),( δX  and ),( CX  represent a cts, a general fts and a crisp fts, respectively. 

Table 3.1 shows that the properties of the fuzzy boundary in ),( CX  are the same as 
those in ),( τX . 
 
 



Chapter three 

 60 

 
Table 3.1 Summary of boundary’s properties in different topological spaces  
      Spaces  
 
Boundary 

Crisp topological 
space  

),( τX  

General fuzzy 
topological space 

),( δX  

Crisp fuzzy 
topological space 

),( CX  
Boundary of a 
subset A 

−− ∩=∂ cAAA  −− ∩⊇∂ cAAA  −− ∩=∂ cAAA  

Boundary of the 
boundary )()(

)(
−∂∪∂

=∂∂

AA
A

o  
 

)()(
)(

−∂∪∂

=∂∂

AA
A

o  

Decomposition 
of the boundary

)()( AAA o ∂∂∪∂=∂

)(
)()(

−∂∪

∂∪∂=∂

A
AAA oo

 

)()( AAA o ∂∂∪∂=∂  

)(
)()(

−∂∪

∂∪∂⊇∂

A
AAA oo

1

)()( AAA o ∂∂∪∂=∂
 

)(
)()(

o

o

A
AAA

∂∪

∂∪∂=∂ −

 

Comparison 
between the 
boundary and 
the boundary of 
the boundary 

 
 

AA ∂⊆∂∂ )(  

 
 

AA ∂⊆∂∂ )(  

 
 

AA ∂⊆∂∂ )(  

Comparisons 
between the 
boundary of the 
boundary and 
the boundary of 
the boundary of 
the boundary 

 
 

)())(( AA ∂∂=∂∂∂  

 
 

)())(( AA ∂∂⊆∂∂∂ 2 

 
 

)())(( AA ∂∂=∂∂∂  

Relationships 
between the 
interior, the 
boundary and 
the exterior 

∅=∩

∅=∂∩

∅=∂∩

eo

e

o

AA
AA
AA

 

∅=∂∂∩∂ )()( AA o  

The contents of these 
intersections are 
uncertain. 

∅=∩

∅=∂∩

∅=∂∩

eo

e

o

AA
AA
AA

 

∅=∂∂∩∂ )()( AA o  

 
 

3.5 Intersection matrices in crisp fts 

3.5.1 3*3-intersection matrix in crisp fts 

Based on the above discussion, it is clear that the interior, the boundary and the exterior 
of a fuzzy set are mutually disjoint in a crisp fts ),( CX . Therefore, we can formulate a 
3*3-intersection matrix between these topological parts of two fuzzy sets A and B in 

),( CX . 
                                                           
1 This is because )( oAA ∂⊇∂  and )()( −∂∪∂⊇∂ AAA o . So )()()( −∂∪∂∪∂⊇∂ AAAA oo . 
2 This is because AA ∂⊆∂∂ )( . 
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3*3-intersection matrix in crisp fts: Let A, B be two fuzzy sets in a crisp fts ),( CX . 
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We call (1) the 3*3-intersection matrix in ),( CX . According to the definition of 
topological relation, the fuzzy topological relation from fuzzy set A to fuzzy set B is a 
fuzzy relation that is topological invariant under a fuzzy homeomorphism. We now 
show that this intersection matrix can identify the topological relations from fuzzy set A 
to fuzzy set B. We also write the topological relation between A and B. Let →f  be a 
homeomorphic mapping from fts X to fts Y: YXf →→ : . YXf →→ :  is intersection 
preserving, that is, for two subsets A and B in X, )()()( BfAfBAf →→→ ∩=∩ . Then 

)()()( oooo BfAfBAf →→→ ∩=∩ , )()()( BfAfBAf oo ∂∩=∂∩ →→→ , and the 
same for the remaining intersections BA ∂∩∂ , eBA∩∂ , oe BA ∩ , BAe ∂∩ , 

ee BA ∩ . Therefore the topological relation from A to B can be identified by the 
topological invariants in the intersections. Note the two conditions listed in Section 
3.3.2 are also necessary in the fts. If the fuzzy sets in the intersections are not 
topological properties, then the relation identified by the topological invariant in the 
intersections is not a topological relation from A to B. For example, let A’, A’’ be 
arbitrary subsets of A and B’, B’’ be arbitrary subsets of B. Then the relation identified 
by the intersection '' BA∩ , '''' BA ∩  is not topological even if we adopt the topological 
properties in the intersections. Similarly, when the intersection content is not a 
topological invariant, even if the subsets in the intersection are topological properties, 
the relation is also not topological. For example, assume that the area size is the content 
of the intersection, the result relation is not topological.   
 
Comparing intersection matrix (1) with (0), it can be found that they are of the same 
form. Actually intersection matrix (1) is the exact extension of the 9-intersection matrix 
(0) from a cts to ),( CX . If all subsets are crisp, then ),( CX  degenerates into a cts. 
Then 3*3-intersection matrix (1) also changes into matrix (0). This is the exact 
9-intersection matrix that Egenhofer and Franzosa deduced in the cts in 1991. 
 
The difference between this matrix and the algebraic model lies in the fact that the 
algebraic model is based on the cts, which “allows” the existence of the fuzzy set – “the 
broad boundary”. In the intersection matrix (1), however, the fuzzy boundary is crisp. If 
the membership value of every element of the broad boundary is projected to 1 of 
interval [0,1], then the broad boundary is equal to the fuzzy boundary. 
 

3.5.2 4*4-intersection matrix in crisp fts 

The above 3*3-intersection matrix is derived based on the interior, boundary, and 
exterior. In Section 3.4, it has been shown that a fuzzy set can be decomposed into four 
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parts: the interior, the boundary of the boundary, the interior of the boundary and the 
exterior, which are mutually disjoint; therefore, we can introduce a 4*4-intersection 
matrix in ),( CX  between two fuzzy sets. 
 
4*4-intersection matrix in crisp fts: Let A, B be two fuzzy sets in a crisp fts ),( CX . 
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We call (2) the 4*4-intersection matrix in ),( CX . According to the analysis in Section 
3.5,1, this intersection matrix can also be adopted to identify the topological relations 
between two fuzzy sets in ),( CX . Based on Proposition 3.11, it is clear that the 
4*4-intersection matrix between two fuzzy sets is exhaustive in terms of boundaries, 
interiors, and exteriors in ),( CX  if the disjointness between the boundary of the 
interior and the boundary of the closure is not considered. That is, besides these four 
topological parts, there are no more topological parts that are mutually disjoint. 
Therefore, if the disjointness between the boundary of the interior and the boundary of 
the closure is not considered, then the 4*4-intersection matrix is the formalization that 
will identify all topological relations between two fuzzy sets when a topological 
invariant is fixed.  
 
In particular, if the boundary of the interior of a fuzzy set is equal to the boundary of the 
closure of that set in ),( CX , then the interior of the boundary is empty. For a crisp 
simple region, the interior of the boundary is empty. Therefore, the relation between a 
fuzzy set and a crisp set in ),( CX  can be formalized by a 4*3-intersection matrix: 
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3.5.3 5*5-intersection matrix in crisp fts 

If the boundary of the closure and the boundary of the interior are disjoint, then the 
exterior, the boundary of the closure, the interior of the boundary, the boundary of the 
interior, and the interior of a fuzzy set are five mutually disjoint parts in ),( CX . We 
can then form a 5*5-intersection matrix if two fuzzy sets hold this property. 
 
5*5-intersection matrix in crisp fts: Let A, B be two fuzzy sets in a crisp fts ),( CX .  
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If the boundary of the interior and the boundary of the closure are disjoint for two fuzzy 
sets, then the 5*5-intersection matrix is exhaustive in terms of the interior, the boundary 
and the exterior. That is, the 5*5-intersection matrix will identify all topological 
relations between two fuzzy sets when a topological invariant is fixed. No more 
topological relations can be identified.  
 

3.6 A definition of a simple fuzzy region in crisp fts 
The above intersection matrices can identify topological relations between two fuzzy 
sets. However, not all fuzzy sets are fuzzy spatial objects. In order to define fuzzy 
spatial objects, we have to limit the general fuzzy sets by some conditions. In this 
section we introduce a definition of a simple fuzzy region in a crisp fts. Firstly, let us 
look at the possible forms of fuzzy regions in reality. 
 

3.6.1 Simple fuzzy regions in GIS 

When natural phenomena such as mountains, oceans, grassland and population 
distribution density are represented in GIS, there are two ways to represent them: crisp 
form and fuzzy form. Take the coastline as an example. In the crisp situation, the 
coastline is usually represented by an average tide. The attribute of an area object in 
terms of water is assigned  0 if the object is higher than the average tide, and the 
attribute is 1 if the object is lower than the average tide (Figure 3.5).   
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Representation of a crisp simple region in GIS 
 
When we represent fuzziness related to the coastline, there are several options, 
depending on the requirement of concrete applications.  
 
Fuzzy region I: modeling the fuzziness by a single value. For example, when we form a 

Water = 0 

Water = 1 

Average 
Height 
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water area, the fuzziness of the object can be assigned in a simple way according to the 
low tide and the high tide. For example, the membership value of a fuzzy water area can 
be assigned as follows: the membership is 1 if the area is below low tide, 0.5 if it is 
between low tide and high tide, and 0 if it is higher than high tide (Figure 3.6). 
 
 
 
 
 
 
 
 
 

Figure 3.6 Representation of a water area by a simple membership 
 
Fuzzy region II: modeling fuzziness in terms of finite membership values. In the 
coastline example, the membership values of a water area can also be represented by 
several membership values (Figure 3.7).   
 
 
 
 
 
 
 
 
 

Figure 3.7 Representation of a water area by finite memberships 
 
 
Fuzzy region III: the fuzziness of water can also be represented by the value of a 
continuous mapping from the height to [0,1] (Figure 3.8).  
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Representation of a water area by a membership function 
 

3.6.2 A definition of a simple fuzzy region in crisp fts 

A crisp simple region has been abstracted as a regular closed set with a connected 
interior in the connected crisp topological space. The definition of a fuzzy region has 
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also been discussed by Schneider (1999). However, in his definition a fuzzy region is an 
open set, which is inconsistent with the definition of a crisp simple region. We now 
generalize a simple fuzzy region in ),( CX . As we know, a crisp subset is a special case 
of fuzzy set. Therefore it is natural to consider that a crisp simple region is also a special 
case of a simple fuzzy region. We define a simple fuzzy region in ),( CX :  
 
Definition 3.14 A fuzzy set A is called a simple fuzzy region in the connected ),( CX , 
such that:  

(1) The closure of A is a proper non-empty connected regular closed subset, i.e., 
−−− = oAA ; 

(2) The support of A is equal to the closure; 
(3) The interior A is a non-empty connected regular open set; 
(4) The boundary of A, the interior of the boundary of A and the exterior of A are 

connected.  
 
The first condition is extended according to the requirement of a crisp simple region. In 
the case that A is a crisp simple region, it should be closed. The regularity will remove 
some “dangle points” or “break lines” in the closure of fuzzy set A. The second 
condition requires that A should be equal to a crisp simple region when A is projected to 
1 of [0,1]. It means that we do not allow an open set (for instance an open disk) in 

),( CX  to be a simple fuzzy region. The third condition will remove some “dangle 
points” or “break lines” in the interior of fuzzy set A, and will allow only “one piece” 
for the interior. The fourth condition requires the boundary and the interior of the 
boundary of a simple fuzzy region to be also connected. If the interior of the boundary 
of A is empty and A is crisp, then A is a simple crisp region. The exterior should be 
connected otherwise a simple fuzzy region may contain a “hole”.  
 
Proposition 3.15 In connected ),( CX , the boundary of the interior and the boundary 
of the closure of a simple fuzzy region are not empty: ∅≠∂ )( oA ; ∅≠∂ − )(A . 
Proof: Because ),( CX  is connected, X cannot be the union of two disjoint open sets.  
 
The following proposition is obvious according to Proposition 3.8. 
Proposition 3.16 Let A be a simple fuzzy region in ),( CX . 

(1) The pairs oA  and −− oAX , oA  and oA)(∂ , oA  and eA  are 
(Q)-separated; 

(2) The pairs oA)(∂  and −∂− oAX )( , oA)(∂  and eA  are (Q-)separated. 
 
Proposition 3.17 Let A and B be simple fuzzy regions in ),( CX .  

(1) If ∅=∂∩∅≠∩ )(, oooo BABA , then oo BA ⊆ ;  
(2) If ∅=∂∂∩∅≠∂∩ ))((,)( oooo BABA , then oo BA )(∂⊆ . 

Proof:  
(1) )()( ooo BXBXB ∂−=−∪ −  because they are all crisp. Since 

∅=∂∩ )( oo BA , )( −−∪⊆ ooo BXBA . Since oB  and −− oBX  are 
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Q-separated, oA  is connected. Then either oo BA ⊆  or )( −−⊆ oo BXA . 
Since ∅≠∩ oo BA , oo BA ⊆ .   

(2) ))(())(()( ooo BXBXB ∂∂−=∂−∪∂ − . Since ∅=∂∂∩ ))(( oo BA ,  
))(()( −∂−∪∂⊆ ooo BXBA . Then either oo BA )(∂⊆  or ))(( −∂−⊆ oo BXA  

since oB)(∂  and −∂− oBX )(  are separated and oA  are connected. Since 

∅≠∂∩ oo BA )( , oo BA )(∂⊆ . 
 
In order to illustrate a simple fuzzy region, let X be a fuzzy Euclidean space 2~R . We 
define a crisp fts ),~( 2 CR . The fuzzy Euclidean space will have the ordinary Euclidean 

distance if all points are crisp. C is the crisp fuzzy topology on 2~R  if every fuzzy open 
disk is open and crisp. The fuzzy topology C on 2~R  is equal to the usual topology on 
the Euclidean space 2R . Therefore, ),~( 2 CR  is normal, p-normal and connected. 

),~( 2 CR  is not a stratified space. The difference between ),~( 2 CR  and the ordinary 

Euclidean space 2R  lies in the fact that ),~( 2 CR  allows fuzzy sets, but 2R  has no 
fuzzy sets.  
 
The interpretation of a simple fuzzy region in ),~( 2 CR  is illustrated in Figure 3.9. 
Figure 3.9(I) shows a simple fuzzy region in reality. Figure 3.9(II) shows the definition 
of a simple fuzzy region in ),~( 2 CR  and some related concepts. In Figure 3.9(II), the 
membership values of a fuzzy region are represented in axis membership.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 A definition of a simple fuzzy region in ),~( 2 CR  
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II: A definition of a simple fuzzy region 
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Figure 3.9 shows only a few properties of a simple fuzzy region. Figure 3.10 illustrates 
the definition in a planar way. Since in ),~( 2 CR  all topological properties are crisp, it is 
possible to draw all concepts in the definition of a simple fuzzy region in the plane. In 
Figure 3.10 the closure is the definition of a simple fuzzy region from the reality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10 Interior, boundary, interior of the boundary and  
boundary of the boundary of a simple fuzzy region in ),~( 2 CR  

 
Figure 3.11 illustrates the possible settings of a simple fuzzy region in a planar way. 
Figure 3.12 gives examples of the impossible settings of a simple fuzzy region that do 
not meet all the four conditions.  
 
 
 
 
 

Figure 3.11 Possible settings of a simple fuzzy region in ),~( 2 CR  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12 Impossible settings of simple fuzzy regions in ),~( 2 CR  
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3.7 Topological relations between simple fuzzy regions in 
),~( 2 CR   

3.7.1 Identification by 3*3-intersection matrix 

All 3*3-intersection, 4*4-intersection and 5*5-intersection matrices can be applied as 
approaches for the identification of topological relations between two simple fuzzy 
regions in different settings. We focus on the identification of topological relations 
between two simple fuzzy regions in ),~( 2 CR . A simple fuzzy region is further regarded 
as bounded and two-dimensional. The 3*3-intersection matrix can be adopted if the 
boundary of a fuzzy region is considered as one topological part. The 4*4-intersection 
matrix can be used when four topological parts are distinguished. Egenhofer and 
Herring (1990b) list 12 geometric conditions for relations between two simple regions 
in 2R . Clementini and Di Felice updated these 12 geometric conditions in their 
algebraic model for their fuzzy regions in 2R . Their conditions can be directly applied 
if the 3*3-intersection matrix is used for identifying topological relations between two 
simple fuzzy regions in ),~( 2 CR , since the fuzzy topology C is equal to the topology on 
the Euclidean space 2R .  
 
Let A and B be two simple fuzzy regions in ),~( 2 CR . These conditions are: 

(1) The exteriors of two fuzzy regions intersect each other; 
(2) The boundary of A intersects at least one part of B, and vice versa; 
(3) If the interior of A intersects the interior and the exterior of B, then it must also 

intersect the boundary of B, and vice versa; 
(4) If both boundaries do not intersect each other, then at least one boundary must 

intersect its opposite exterior;  
(5) If both boundaries intersect the opposite interiors, then the boundaries must 

also intersect each other;  
(6) If the interior of A intersects the exterior of B, then the boundary of A must 

also intersect the exterior of B, and vice versa; 
(7) If both interiors are disjoint and the boundary of A intersects the interior of B, 

then the two boundaries must intersect each other, and vice versa;  
(8) If the interior of A is a subset of the closure of B, then the boundary of A must 

intersect the closure of B, and vice versa;  
(9) If both interiors are disjoint, then the interior of A intersects either the 

boundary or the exterior of B, and vice versa;  
(10) If the interior of A does not intersect the closure of B, then the boundary of A 

must intersect the exterior of B, and vice versa;  
(11) If the boundary of A intersects the interior and the exterior of B, then it must 

also intersect the boundary of B, and vice versa;  
(12) If the closure of A is a subset of the interior of B, then the exterior of A must 

intersect the interior of B, and vice versa.  
 
Based on these conditions, 44 relations can be identified by using the 3*3-intersection 
matrix (Appendix 1). In Appendix 1, if the intersection between two fuzzy sets is empty, 
then it is 0, otherwise 1. For example, the disjointness relation between two fuzzy 
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regions that is described by: 
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is simplified as: 
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where 0 represents the empty set, 1 otherwise. The result is the same as that of the 
algebraic model.  
 

3.7.2 Identification by 4*4-intersection matrix 

In general there are 216= 65,536 relations between two fuzzy sets by using the 
4*4-intersection matrix. Twelve constraints are generalized for the identification of 
topological relations between two simple fuzzy regions in ),~( 2 CR . This generalization 
is made simply by decomposing the boundary of a fuzzy simple region into two parts: 
the boundary of the boundary and the boundary of the interior. These 12 conditions can 
be easily proven based on Proposition 3.17. For the simplicity’s sake, call the interior, 
the interior of the boundary and the exterior “topoarea”, and call the boundary of the 
boundary “topoline”. The 12 conditions are as follows (conditions (1) and (5) are 
unchanged): 
  

(1) The exteriors of two fuzzy regions intersect each other; 
(2) Any part of A intersects at least one part of B, and vice versa; 
(3) If one topoarea of A intersects two topoareas of B, then this topoarea must also 

intersect with the topoline of A, and vice versa; 
(4) If both topolines do not intersect each other, then one topoline must intersect 

at least its opposite exterior;  
(5) If both topolines intersect the opposite interiors, then the topolines must also 

intersect each other;  
(6) If the interior (or the interior of the boundary, respectively) of A intersects the 

exterior of B, then the topoline of A must also intersect the exterior of B, and 
vice versa; 

(7) If both interiors (or both interiors of the boundary, respectively) are disjoint 
and the topoline of A intersects the interior (or the interior of the boundary, 
respectively) of B, then the two topolines must intersect each other, and vice 
versa;  

(8) If the interior (or the interior of the boundary, respectively) of A is a subset of 
the closure of B (or the closure of the interior of B or the closure of the 
boundary of B, respectively), then the boundary must intersect the closure of B 
(or the closure of the interior of B or the closure of the boundary of B, 
respectively), and vice versa;  

(9) If both interiors (or both interiors of the boundary, respectively) are disjoint, 
then the  interior (or the interior of the boundary, respectively) of A intersects 
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either the interior of the boundary of B (or the interior of B, respectively) or 
the exterior of B, and vice versa; 

(10) If the interior (or the interior of the boundary, respectively) of A does not 
intersect the closure of B, then the topoline of A must intersect the exterior of 
B, and vice versa; 

(11) If the topoline of A intersects one topoarea of B, then at least one topoarea of 
A intersects this topoarea of B; 

(12) If the closure of A is a subset of the interior (or the interior of the boundary, 
respectively) of B, then the exterior of A must intersect the interior (or the 
interior of the boundary, respectively) of B, and vice versa.  

 
For the identification, we adopt the 44 relations identified by the 3*3-intersection 
approach at first since the boundary is the union of the interior of the boundary and the 
boundary of the boundary of a fuzzy set. Then we extend each of the relations according 
to the above geometric conditions. One hundred and fifty-two (152) relations are 
identified by using the 4*4-intersection approach (see Appendix 2).  
 

3.8 Conclusions and discussions 
This chapter proposed an approach for identifying topological relations between two 
simple fuzzy regions. The basic idea is to form a crisp fts for fuzzy sets. By recognizing 
mutually disjoint topological parts of fuzzy sets in cts, an extension is made from the 
9-intersection to the 4*4-intersection and 5*5-intersection matrices. This extends the 
9-intersection approach from the crisp domain into the fuzzy domain and unifies the 
conclusion that is derived by Egenhofer and Franzosa as well as Clementini and Di 
Felice. By using this approach, topological relations can be formally derived between 
two simple fuzzy regions in the crisp fts.  
 
Different types of intersection matrices can be used in different situations. The 
3*3-intersection can be used when the boundary is not distinguished in detail; the 
4*4-intersection can be adopted when the disjointness between the boundary of the 
interior and the boundary of the closure of the fuzzy region cannot hold; and the 
5*5-intersection approach can be applied when these two boundaries can be defined as 
separated closed sets.  
 
This approach is also applicable for the identification of topological relations between 
fuzzy sets and crisp sets since the crisp fts can accommodate both fuzzy and crisp sets.    
 
Several problems have to be further investigated. One is how to derive topological 
relations between two fuzzy sets in the pure fuzzy topological space. The crisp fts is too 
coarse since in such a space the membership values are totally neglected. For example, 
we cannot compare the membership values between two simple fuzzy regions. A simple 
fuzzy region is defined in the crisp fts. It is usually neither closed nor open in the crisp 
fts. This is inconsistent with the definition of a crisp simple region in cts where a crisp 
simple region is a regular closed set.  
 
Another problem is how to build up a fuzzy model for GIS applications when fuzzy 
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spatial objects are involved. In GIS applications, there could be fuzzy lines, fuzzy points 
and fuzzy regions. It is also necessary to identify the topological relations between 
them. 
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Chapter Four 

Topological Relations 

in a General Fuzzy Topological Space 

 
 
 

4.1 Introduction 
In the previous chapter, the 3*3, 4*4 and even 5*5-intersection matrices were presented 
based on the interior, the boundary and the exterior of a fuzzy set in the crisp fts, and a 
simple fuzzy region was defined on the crisp fts. The topological relations between two 
simple fuzzy regions were also identified in the crisp fuzzy Euclidean space.  
 
It is noticed that all these realizations are based on the crisp fts. This kind of space is too 
coarse from the topological point of view. Let ),( CX  be a crisp fts and ),( τX  be a 
cts. Then the topology C is equal to τ  on X . The only difference is that in ),( CX  
fuzzy sets exist whereas ),( τX  has no fuzzy set. Therefore the interior, the boundary 
and the exterior of a fuzzy region are all crisp sets. We repeat Figure 3.10(II) in Figure 
4.1. The simple fuzzy region A itself is not a closed set. The boundary of A does not 
belong to A, but it is projected to 1 of [0,1] (Figure 4.1).     
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Problems of the definition of a simple fuzzy region in ),~( 2 CR  
 
The topological relations between two simple fuzzy regions are identified based on 

A

2R  
Exterior 

Interior 

Boundary 

),~( 2 CR  

1 

Membership 

y 

x
0 



Chapter four 
 

 74 

these crisp topological parts. The shortcomings of the definition of a simple fuzzy 
region are as follows. (1) The membership values of a fuzzy set are totally neglected. 
For example, we cannot compare the membership values between two fuzzy regions. (2) 
A simple fuzzy region could be neither closed nor open. This is inconsistent with the 
definition of a crisp simple region in the crisp topological space where a crisp simple 
region is a regular closed set. 
 
In Section 3.3.2, it is pointed out that in order to identify the topological relations 
between two fuzzy sets, each subset of any fuzzy set in the intersections should be 
topological properties, and they are mutually disjoint. Proposition 3.4 has shown that 
the boundary is disjoint with the interior if and only if the interior of a fuzzy set is crisp. 
Therefore, unless we specify that the interior of a fuzzy set is crisp, it is impossible to 
identify the topological relations in the general topological space in terms of the interior, 
boundary and exterior of a fuzzy set.  
 
The question is whether it is possible to find other topological properties of a fuzzy set 
that are mutually disjoint. This chapter will introduce a method to formalize and identify 
the topological relations between two simple fuzzy regions in a general fuzzy 
topological space. Section 4.2 proposes several topological properties, such as the fringe, 
the core, the outer, the internal fringe and the frontier of a fuzzy set. Section 4.3 
introduces two 3*3-intersection matrices and one 4*4-intersection matrix based on these 
topological properties in the general fuzzy topological space. Section 4.4 defines a 
simple fuzzy region formally in a general fuzzy topological space. Section 4.5 discusses 
the topological relations between two simple fuzzy regions. Section 4.6 compares the 
different topological spaces and the definitions of a simple fuzzy region. Section 4.7 
presents the conclusions and discussions.   
 

4.2 More topological properties 

4.2.1 Core and fringe 

The interior, the boundary and the exterior might not be mutually disjoint in a general 
fuzzy topological space. However, it is possible to find other subsets that are mutually 
disjoint.  
 
Definition 4.1 Let ),( δX  be an fts. The subset of the closure of fuzzy set A where 

0))(( =∩ −− xAA c  for all Xx∈  is called the core of A in X and denoted by ⊕A . The 
subset of the closure of fuzzy set A where 0))(( >∩ −− xAA c  for all Xx∈  is called 
the fringe of A and denoted by Al . In other words, )()( xAxA −⊕ =  iff 

0))(( =∩ −− xAA c .  )()( xAxA −=l  iff 0))(( >∩ −− xAA c  for all Xx∈ . 
 
For example, in an fts ),~( dR  such that d is induced from the usual topological space R, 
Let A be a fuzzy closed interval:   
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The interior, the boundary, the core and the fringe are illustrated in Figure 4.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Interior, boundary, core, and fringe of a fuzzy closed interval in ),~( dR  
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Obviously the following proposition holds for a subset in the fts.  
Proposition 4.2 Let A be a fuzzy set in fts ),( δX . Then AAAAA l∪=∂∪= ⊕⊕− . 
 
Denote the support of the closure of fuzzy set A by +A . The complement of +A  is 
called the outer of fuzzy set A and is written as =A . Obviously both +A  and =A  are 
crisp. The following proposition obviously holds.  
 
Proposition 4.3 Let A be a fuzzy set in fts ),( δX . Then ⊕A , Al  and =A  are 
mutually disjoint. 
 
It is important to investigate the relationships between the fringe and the core with the 
boundary and the interior of a fuzzy set in the fts.  
 
Proposition 4.4 Let A be a fuzzy set in fts ),( δX . Then ⊕A  is the only crisp subset of 

oA . 
Proof: According to the definition of the core, Xx∈∀ , 0)()( >= −⊕ xAxA  iff 

0))(( =∩ −− xAA c . Then either 0)( =− xA  or 0)( =− xAc . (i) When 0)( =− xA , 
then 0)( =⊕ xA . Contradiction. (ii) When 0)( =− xAc , then 0)( =xAoc  according to 
Proposition 2.9, so 1)()( == − xAxAo . It shows Xx∈∀ , if 0)( >⊕ xA , then 

1)( =⊕ xA  and 1)( =xAo . On the other hand, if 1)( =xAo , then 0)( =xAoc , so 
0)( =− xAc . Therefore 0))(( =∩ −− xAA c . It follows that if 1)( =xAo , then 

1)( =⊕ xA . 
Proposition 4.4 shows that ⊕A  is crisp and oAA ⊆⊕ .  
 
Proposition 4.5 Let A be a fuzzy set in fts ),( δX .  

(1) ⊕⊕⊕ ⊆ AA ; 
(2) ⊕⊕ = AAo , ⊕⊕− = AA ; 
(3) If BA⊇ , then ⊕⊕ ⊇ BA ; 
(4) ⊕⊕⊕ ∩=∩ )( BABA ; 
(5) If ⊕A  is open, then ∅=∩ ⊕⊕ )(AA l ; 
(6) ⊕⊕⊕ = AA  iff ⊕A  is open. 

Proof: 
(1) Xx∈∀ , if 0)( >⊕⊕ xA , then 0)))((( =⊕ xAl  according to Proposition 4.3. 

Then 0))(( =∩ −⊕−⊕ xAA c . Since 0)( >−⊕ xA , we have 0)( =−⊕ xA c , and 
1)( =⊕ xA .  Therefore ⊕⊕⊕ ⊆ AA . 

(2) ⊕oA  is the subset of −oA  where 0))(( =∩ −− xAA oco  and 0)( >− xAo , 
Xx∈∀ .  It follows that 0)( =− xAoc  and 1)( =xAo .  Then 

1)()( == ⊕⊕ xAxA o . Therefore ⊕⊕ = AAo . Similarly, ⊕−A  is the subset of 
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−A  where 0))(( =∩ −−− xAA c . Since ))(())(( xAAxAA cc −−−−− ∩≤∩ , so 
Xx∈∀ , when 0))(( =∩ −− xAA c , then 0))(( =∩ −−− xAA c . Therefore 

⊕⊕− = AA . 
(3) If BA⊇ , then oo BA ⊇ . Since ⊕⊕ BA and  are the crisp subsets of 

oo BA and , it follows ⊕⊕ ⊇ BA . 
(4) Since ⊕A  is the only crisp subset of oA , and ⊕B  is the only crisp subset of 

oB , then ⊕⊕ ∩ BA  is the crisp subset of oo BA ∩ . Since 
ooo BABA )( ∩=∩ , ⊕⊕ ∩ BA  is also the crisp subset of oBA )( ∩ . 

Therefore, ⊕⊕⊕ ∩=∩ )( BABA . 
(5) Xx∈∀ , )())(( xAxAl −⊕⊕ =  iff 0))(( >∩ −⊕−⊕ xAA c . If ⊕A  is open, then 

cc AA ⊕−⊕ = . Thus, Xx∈∀ , when 0))(( >⊕ xAl , then 0)( >−⊕ xA  and 
0)()( >= ⊕−⊕ xAxA cc . According to Proposition 4.4, ⊕A  is crisp. Then cA⊕  

is crisp and 1)( =⊕ xA c . Therefore, if Xx∈∀ , 0))(( >⊕ xAl , then 
0)))((( =∩ ⊕⊕ xAlA . 

(6) If ⊕A  is open, then oAA ⊕⊕ = . According to Proposition 4.2, 
)()()( ⊕⊕⊕⊕⊕⊕⊕−⊕ ∪=∪=∪= AAAAAAA o lll . Since ⊕⊕⊕⊕ ⊆⊆ AAA o , 

therefore ⊕⊕⊕⊕ == AAA o . 
       Since oAA ⊕⊕⊕ ⊆  and ⊕⊕ ⊆ AA o , therefore oAAA ⊕⊕⊕⊕ == . ⊕A  is open. 
 
Proposition 4.6 Let A be a fuzzy set in fts ),( δX . 

(1) AA ∂⊆l ; 
(2) AA ∂=l  iff Al  is closed; 
(3) AA ∂=−)(l . 

Proof: These are obvious. 
 
Proposition 4.7 Let A be a fuzzy set in fts ),( δX .  

(1) cAAA ⊕− ∩=l ; 
(2) ∅=⊕)( Al ; 
(3) AA ∂=)(ll ; 
(4) If ⊕A  is open, then AA ll ⊆⊕ )(( . 

Proof:  
(1) Since ∅=∩⊕ AA l , we have AA c l⊇⊕ , and cAAA ⊕− ∩⊆l . On the other 

hand, Xx∈∀ , if 0)( >xAl , then ))(()()( xAAxAxA c⊕−− ∩⊇=l . 
Therefore, cAAA ⊕− ∩=l . 

(2) ∅=∩⊆∩=∩=∩= ⊕⊕⊕⊕⊕⊕⊕⊕−⊕⊕−⊕ cccc AAAAAAAAA )()(l . The 
second equation is based on Proposition 4.5(4). The third equation is based on 
Proposition 4.5(2).  

(3) AAAAA c ∂==∩= −⊕− )()()()( lllll . 
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(4) If ⊕A  is open, then AAAAAAAA ccc ll =∩⊆∩=∩= ⊕−⊕−⊕⊕⊕−⊕⊕ )( . 
 
According to Propositions 4.7(3) and 4.6(3), if the fringe of a fuzzy set is closed, then 
the fringe of the fringe is equal to the fringe, which is the boundary of a fuzzy set.  
 
Proposition 4.8 Let A be a fuzzy set in fts ),( δX . AAiffAA l=∂∅=∩∂ ⊕ . 
Proof:   

⇐ This is obvious since ∅=∩⊕ AA l . 
⇒ If ∅=∩∂ ⊕AA  then cAA ⊕⊆∂ . Then AAAAAA c ∂=∂∩⊇∩= −⊕−l . On 

the other hand, according to proposition 4.6(1) AA l⊇∂ , therefore 
AA l=∂ . 

 
Proposition 4.9 Let A be a fuzzy set in fts ),( δX . If ⊕A  is open, then AA l=∂ . 
Proof: If ⊕A  is open, then cAAA ⊕− ∩=l  is closed. Then AA l=∂ .  
 
According to these propositions, it can be perceived that the core might not be open. It 
is just the crisp subset of the interior of a fuzzy subset. Similarly, the fringe might not be 
closed. The fringe can also be regarded as another definition of the fuzzy boundary of a 
fuzzy set. The fringe is a subset of the boundary of a fuzzy set. Proposition 4.9 shows 
that the fringe of a fuzzy set is closed and is equal to the boundary if the core is open. In 
Figure 4.2, the boundary is equal to the fringe of fuzzy interval A in ),~( dR  since the 
fringe is closed.   
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Relationships between core, interior,  
fringe and boundary of a fuzzy set in fuzzy topological space 
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The above propositions reveal the relationships between the core and the interior, and 
the fringe and the boundary of a fuzzy set A in a general fts. The relationships are 
illustrated in Figure 4.3. In Figure 4.3, a fuzzy set is represented by a modified VENN 
diagram. A VENN diagram is modified according a fuzzy set in the fuzzy Euclidean 
space. For example, since the boundary of a fuzzy set is usually located at the rim of a 
fuzzy set in the fuzzy Euclidean space, the boundary is then represented by an annulus; 
the interior is drawn by an open disk since usually it has no boundary.    
 
Now we can check if the core, fringe and outer are topological properties.  
Proposition 4.10 Let A be a fuzzy set in fts ),( δX . The core, the fringe and the outer of 
fuzzy set A are topological properties. 
Proof: The core and the outer are topological invariants since any (fuzzy) 
homeomorphic mapping is crisp-subset preserving. Let →f  be a homeomorphic 
mapping from fts ),( δX  to fts ),( θY . For every XA⊆ , there is YB ⊆  such that 

BAf =→ )( . Since any homeomorphic mapping is bijective, i.e., 
=∩= ⊕−→→ )()( cAAfAf l )()( cAfAf ⊕→−→ ∩ BBB c l=∩= ⊕− , therefore the fringe 

is also a topological invariant.   
 
Proposition 4.10 shows that not only are the interior, the boundary, the closure and the 
exterior of a fuzzy set topological properties in the fts, but also the core, the fringe and 
the outer of a fuzzy set hold such properties.  
 

4.2.2 Internal and frontier 

Besides the core and the fringe, it is possible to derive other topological properties of a 
fuzzy set in the fts.  
 
Definition 4.11 Let ),( δX  be an fts. The subset of the closure of fuzzy set A where 

)()( xAxA o>−  for all Xx∈  is called the frontier of A in X and denoted by Ael . 
The subset of the closure of fuzzy set A where )()( xAxA o=−  for all Xx∈  is called 
the internal of A and denoted by iA .  
 
In other words, )()( xAxAi −=  iff )()( xAxA o=− . )()( xAxAe −=l  iff 

)()( xAxA o>−  for all Xx∈ . The concept of frontier can also refer to the definition 
of boundary (Wu and Zheng 1991).   
 
The internal and the frontier of a closed interval A that is described in Figure 4.2 are: 
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They are illustrated in Figure 4.4.  
 
 
 
 
 
 
 
 
 

Figure 4.4 Internal and frontier of a fuzzy closed interval in ),~( dR  
 
The following proposition is obvious.  
Proposition 4.12 Let A be a fuzzy set in fts ),( δX . 

(1) Ael  and iA  are disjoint with each other, ∅=∩ ie AAl ; 
(2) ie AAA ∪=− l . 

 
Proposition 4.13 Let A and Ael  be closed sets in fts ),( δX . Then )( AA eee lll = . 
Proof: Since A is closed, then AA el⊇ , therefore, )( AA eee lll ⊇ . We will verify the 
other inequality, that is, )( AA eee lll ⊆ . Let B be a subset of ))(( Aee ll , such that for 
all Xx∈∀  with )()())(( xAxA oee ll ≥ , then ))(()( xAxB el= . Let us prove that B 
also satisfies “ Xx∈∀  with )()( xAxA o>− , then )()( xAxB ≥ ”. In fact, if Xy∈  
satisfies )()( yAyA o>− , then )())(( yAyAl e −= . Then, when )()( yAyA o>− , there is 

)())(( yAyA oe >l . Since A is closed, then AAe ⊆l , and ooe AA ⊆)(l , thus 
)()())(( yAyA oee ll > . Therefore )())(()( yAyAyB e −=≥ l . Since y is arbitrarily 

chosen, therefore AB ⊇ .  
 
Proposition 4.14 Let A be a fuzzy set in fts ),( δX . The internal and the frontier of 
fuzzy set A are topological properties. 
Proof: Let →f  be a homeomorphic mapping from fts ),( δX  to fts ),( θY . For every 

XA⊆ , there is a YB ⊆  such that BAf =→ )( . Since −−→ = BAf )( , and 
oo BAf =→ )( , then for every Xx∈ , if )()( xAxA o>− , then there is a Yy∈  such 

that )()( yByB o>− . Similarly, for every Xx∈ , if )()( xAxA o=− , then there is a 
Yy∈  such that )()( yByB o=− . Therefore for every Xx∈ , if )()( xAxA o>− , then 

)())(( xAxAe −=l , there is a Yy∈  such that )()( yByB o>− , that is, 
)())(( yByBe −=l . Therefore BAf ee ll =→ )( . So the frontier is a topological property. 

Similarly, the internal is also a topological property.  
 
Now we investigate some relationships between the core, the internal and the interior, as 
well as the boundary, the fringe and the frontier of a fuzzy set in the fts.  
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Proposition 4.15 Let A be a fuzzy set in fts ),( δX .  

(1) oi AAA ⊆⊆⊕ ; 
(2) AAA ell ⊇⊇∂ . 

Proof: 
(1) According to Proposition 4.4, ⊕A  is the crisp subset of oA . According to 

the definition of iA , it is a subset of oA , and it contains the crisp subset of 
oA . 

(2) If )()( xAxA o>−  for all Xx∈ , then 1)( <xAo  and 0)( >=− xAA occ . 
Therefore 0)()())(( >∧=∩ −−−− xAxAxAA cc , therefore 0)( >xAl . So 

AA ell ⊇  
 
According to Proposition 4.15(2), the frontier is contained in the fringe of a fuzzy set. 
This is the reason why we adopt the symbol Ael  for the frontier of a fuzzy set A. The 
frontier can be regarded as another definition of the fuzzy boundary of a fuzzy set in the 
fts. The difference between the frontier and boundary III is that boundary III is closed 
but the frontier could be not closed. If the frontier is closed, then it is equal to boundary 
III. Since AAi ll ⊆ , the frontier is finer than the fringe and the boundary of a fuzzy set 
in the fts. In the example of Figure 4.4, boundary III is the frontier of interval A in 

),~( dR  since the frontier is a closed set.  
 
Figure 4.5 shows the above proposition in a VENN diagram. The relationships between 
the core, the internal and the interior of a fuzzy set A are drawn in Figure 4.5(1). That is, 
the core is the subset of the internal, which is the subset of the interior of a fuzzy set A. 
The relationships between the frontier, the fringe, and the boundary of a fuzzy set A are 
shown in Figure 4.5(2).  
 
 
 
 
 
 
 

Figure 4.5 (1) Relationships between core, internal and interior;  
    (2) Relationships between frontier, fringe and boundary of a fuzzy set 

 in fuzzy topological space 
 
The relationships between the core, the interior, the fringe and the boundary of a fuzzy 
set A are illustrated in Figure 4.6 by a modified VENN diagram. In Figure 4.6, the 
boundary and the interior are copied from Figure 4.3. 
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Figure 4.6 Relationships between internal, interior, 
frontier and boundary of a fuzzy set in fuzzy topological space 

 
The relationships between the core, the internal, the interior, the frontier, the fringe, and 
the boundary of a fuzzy set A are illustrated in Figure 4.7. Figure 4.7 is derived by 
merging the relationships in Figure 4.3 and Figure 4.6.  
 
 
 
 
 
 
 

Figure 4.7 Relationships between core, inner, interior, frontier, fringe and 
 boundary of a fuzzy set in fuzzy topological space 

 
 

4.2.3 Internal of fringe 

We denote the subset of the internal of a fuzzy set A where ci AA ⊕∩  by Ail . Then 
the following proposition is obvious. 
 
Proposition 4.16 Let A be a fuzzy set in fts ),( δX .  

(1) AAA ie lll ∪= ; 
(2) AAA ii l∪= ⊕ . 

 
Proposition 4.16 shows AAi ll ⊆ . Therefore we can call Ail  the internal of the 
fringe of a fuzzy set A (or the internal fringe for short) in the fts. Figure 4.8 shows the 
internal fringe of the closed interval A that is described in Figure 4.2. 
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Figure 4.8 Internal fringe of a fuzzy closed interval in ),~( dR  
 
The following proposition holds according to the definitions. 
 
Proposition 4.17 Let A be a fuzzy set in fts ),( δX . ⊕= AAAA ie ,,, ll  are mutually 
disjoint, and they are topological properties. 
 
Figure 4.9 shows that the core, the internal fringe and the frontier of fuzzy set A are 
mutually disjoint in the fts by a modified VENN diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9 Core, internal fringe and frontier of a fuzzy set  
are mutually disjoint in fuzzy topological space 

 
Surely, we can also decompose the boundary of a fuzzy set into two other disjoint 
subsets. Define the internal of the boundary Ai∂  of fuzzy set A as the subset of the 
boundary where )()( xAxA o=−  for all Xx∈ . Call the internal of the boundary the 
internal boundary for simplicity. For the duality, we denote the frontier of the boundary 
of fuzzy set A by Ae∂ . The union of the frontier of the boundary and the internal 
boundary will be the boundary of fuzzy set A. The internal fringe and the internal 
boundary will be equal when the fringe of a fuzzy set is closed. Since the boundary is 
not disjoint with the core, maybe the internal boundary is not disjoint with the core. The 
definition will not benefit either the definition of fuzzy spatial objects or the intersection 
matrix. We focus more on the frontier and the internal fringe of a fuzzy set.   
 
Proposition 4.18 Let A be a crisp subset in fts ),( δX . ∅=Ail .  
Proof: If Xx∈∃ , 1)( =xAo , then 1)()( ==− xAxA o . Then, =∩ −− ))(( xAA c  
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0))(( =∩− xAA oc , then 0)( =xAl . Therefore Xx∈∀ , iff 1)( <xAo , then 
0)( >xAl . When 1)( <xAo , then 1)()( =≥− xAxA . Then )()( xAxA o>− . Then 
0)( =xAil . Therefore ∅=Ail .  

 
Corollary 4.19 Let A be a fuzzy set in fts ),( δX . Then ∅=⊕ )(Ail  
 
Proposition 4.20 Let A be a fuzzy set in fts ),( δX . If ⊕A  is open, then 

AA ee ll ⊆⊕ )( . 
Proof: According to Proposition 4.7(4), if ⊕A  is open, then AA ll ⊆⊕ )( . Therefore 

AAe ll ⊆⊕ )( . For all Xx∈ , if 0))(( >⊕ xAel , then )()( xAxA o⊕−⊕ > . Since 
)()( xAxA −⊕− ≥ , and )()( xAxA oo ≤⊕ , therefore )()( xAxA o>− . That is, for all 

Xx∈ , when )()( xAxA o⊕−⊕ > , then )()( xAxA o>− . Therefore AA ee ll ⊆⊕ )( . 
 

4.3 Intersection matrices in general fuzzy topological space 
The above section reveals the following facts: 
 

(1) The closure of a fuzzy set can be decomposed into the core, the fringe and the 
outer, which are topological properties and mutually disjoint; 

(2) The closure of a fuzzy set can be decomposed into the internal, the frontier 
and the outer, which are topological properties and mutually disjoint; 

(3) The closure of a fuzzy set can be decomposed into the core, the internal fringe, 
the frontier and the outer, which are topological properties and mutually 
disjoint. 

 
We have two possibilities of formalizing the 3*3-intersection matrix: 
 
3*3-intersection matrix based on the core, the fringe and the outer: Let A, B be two 
fuzzy sets in fts ),( δX .  
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3*3-intersection matrix based on the internal, the frontier and the outer:  Let A, B 
be two fuzzy sets in fts ),( δX .  
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We can also formalize the 4*4-intersection matrix between two fuzzy sets in the fts.  
 
4*4-intersection matrix: Let A, B be two fuzzy sets in fts ),( δX . 
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4*4             (2) 

 
The topological relations between two fuzzy sets can be derived by the intersection 
matrices (1), (1’) and (2) based on the topological invariants in these intersections. 
 

4.4 Formal definition of simple fuzzy region 
In Chapter 3 we defined a simple fuzzy region in the crisp fts. Although it can represent 
the fuzzy spatial objects in GIS, the shortcomings are also obvious as discussed in 
Section 4.1. It is important to define a simple fuzzy region in a more general fuzzy 
topological space, so that it can be applied in any GIS application.  
 

4.4.1 Formal definition of simple fuzzy region in a general fts 

A simple crisp region, formally defined in the cts, is abstracted based on the topological 
properties. In the fts, more topological properties discussed in Section 4.2 can be 
adopted for the definition of a simple fuzzy region in the fts. The practical requirement 
decides which topological properties should be adopted. Since a simple fuzzy region is 
an extension of a simple crisp region from the cts to the fts, we adopt the following 
principles for the definition of a simple fuzzy region.  
 

(1) A crisp subset of a simple fuzzy region should expose the same behaviors as a 
simple crisp region in the cts; and  

(2) A simple crisp region in the fts should have the same behaviors as a simple 
crisp region in the cts.  

 
A formal definition of a simple fuzzy region in the fts is given below: 
 
Definition 4.21 A fuzzy set is called a simple fuzzy region in a connected fts if it meets 
the following conditions: 

(1) It is a non-empty proper double-connected closed set;  
(2) The interior, the core and the outer are double-connected regular open;  
(3) The support is equal to the support of the closure of the interior; 
(4) The fringe is double-connected and the internal fringe is a double-connected 

open set;  
(5) The frontier is a non-empty closed set. 

 



Chapter four 
 

 86 

4.4.2 Explanations of definition 

(1) Double-connectedness  
A crisp simple region is connected in the cts. This means it cannot be the union of two 
non-empty disjoint open sets or two non-empty disjoint closed sets. In the fts, the 
connectedness of a fuzzy set can be basically extended into double-connectedness, both 
open-connectedness and closed-connectedness. A simple fuzzy region should be 
double-connected so that it can not be composed of two disjoint open sets, or two 
disjoint closed sets. That is, it should be in “one piece” in the topological sense.  
 
The interior, the core, the fringe and the outer should be double-connected. The 
double-connectedness of the interior, the core, the fringe and the outer is a natural 
extension of a simple crisp region from the cts to the fts. That is, they should also be in 
one piece.  
 
The reason that the core should be double-connected is as follows. According to our 
principle, the interior of a simple crisp region in the cts should be the interior of a 
simple crisp region in the fts. Since the interior of a simple crisp region in the cts is 
crisp, the interior of a simple crisp region should be also crisp in the fts. According to 
Proposition 4.4, the interior of a simple crisp region is equal to the core of a simple crisp 
region in the fts. Therefore, the core is required to be double-connected.   
 
The internal fringe should be doubled-connected. It is an extra condition since it is not 
expected that the internal fringe will be separated into “several pieces” spatially.  
 
(2) Open sets  
The interior, the core and the outer are required to be regular open sets. That the interior 
should be regular open is the natural extension of the definition of a simple crisp region 
from the cts to the fts. The core should be regular open, since the interior of a simple 
crisp region in the cts should be equal to the core of a simple crisp region in the fts; and 
a simple fuzzy region should have the same “crisp interior” as a simple crisp region in 
the cts. A regular open core will further remove some fuzzy points whose membership 
values are less than 1 within the “area” of the core. The outer should also be regular 
open. In the cts, the exterior is automatically regular open since a simple crisp region is 
regular closed. The outer of a fuzzy set in the fts is similar to the exterior in the cts. 
Therefore, it is also natural to require it to be a regular open set.  
 
The internal fringe should be open. It is an extra condition since it is expected that the 
internal fringe will be an “area” spatially.   
 
(3) Closed sets 
The frontier is defined as closed. According to Proposition 4.20, the frontier is a subset 
of the fringe, and it contains the fringe of the core. So spatially it performs like the 
boundary of the boundary of a crisp simple region in the cts (where the boundary of a 
simple crisp region in cts is equal to the boundary of the boundary). Therefore, it is 
required to be closed.  
 
Another closed set is the simple fuzzy region itself. It should be closed, which is similar 
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to the condition of a simple crisp region in cts. However, it is not required to be regular 
closed. The interior of a simple fuzzy region is required to be regular open. A regular 
open set will eliminate some irregular points and lines, similar to a regular closed set. 
For example, an open disk in crisp Euclidean space without a crisp point at its center is 
an open set but it is not regular since the interior of the closure will be the open disk 
(Figure 4.10). However, it will be seen that a simple fuzzy region may be not regular 
closed. In order to eliminate some “irregular” points, the simple fuzzy region should 
meet condition (3) of the definition.  
 
 
 
 
 

Figure 4.10 An open set and a regular open set in 2R  
 

4.4.3 Discussions on definition 

Defining a simple fuzzy region raises the following arguments: 
  
(1) Why not define a simple fuzzy region based on the interior, the boundary and the 
exterior? 
A simple fuzzy region is defined based on the topological properties of the core, the 
internal fringe, the frontier and the outer of a fuzzy set in the fts. If a simple fuzzy 
region is defined just based on the interior, the boundary and the exterior, it could be 
“abnormal”.  
 
For example, we can define a metric d on the Euclidean plane 2R , such that for two 
points 22 ),(,),( RdcyRbax ∈∈ , and 22 )()(),( dbcayxr −+−= : 
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dR τ  be the metric topology on 2R . Define a fuzzy topology ),~( 2 δR  on 

2~R  such that δ  is the induced topology from 2R . Let A be a fuzzy closed disk and it 
is the upper semicontinuous mapping from 2R  to [0,1]. For example, let A be a closed 
fuzzy disk around point x, such that }2),(:{)( ≤∈= yxdRyxAd  and its membership 
values are ( 0>ε ): 
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Figure 4.8 illustrates the closed disk A. It is a closed set. The boundary of A on ),~( 2 δR  
is A∂ :  
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Then on the boundary, there is an area }2),(1:{)( ≤≤∈= yxrRyxB  whose 
membership value is 1. This area should be treated as the core in GIS applications. In 
Figure 4.11 B is marked in red.  
 
 
 
 
 
 
 
  
 
 

Figure 4.11 An abnormal simple fuzzy region 
 
(2) Why not define a simple fuzzy region based on the internal, the frontier and the 
outer? 
It is possible to define a simple fuzzy region based on the internal, the frontier and the 
outer. For example, we can change condition (2) in Definition 4.21 into a condition such 
that the internal is composed of two non-empty disjoint double-connected open sets. 
However, since the core is not required to be open, the crisp subset of a fuzzy set may 
not be open.   
 
(3) Why not define a simple fuzzy region based on other topological properties? 
In the fts, apart from these topological properties, we can identify more topological 
properties. For example, we can define the subset of the closure of a fuzzy set in the fts 
in such a way that the interior intersects with the interior of the complement of the set. It 
is also a topological property. However, this subset has no direct relationship with fuzzy 
boundary. As we know, the most important aspect for GIS is to model the fuzzy 
boundary of a fuzzy spatial object. Therefore, it is better to neglect these topological 
properties for GIS.  
 

4.4.4 Properties of a simple fuzzy region 

Some properties of a simple fuzzy region are proven in the following propositions. 
 
Proposition 4.22 Let A be a simple fuzzy region in a connected fts X. 

(1) The boundary of A is equal to the fringe of A: AA l=∂ , and they are not 
empty; 

(2) The internal boundary is equal to the internal fringe of A: AA ii l=∂ ; 

Boundary 
1
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x
y
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(3) The frontier of the boundary is equal to the frontier of A: AA ee l=∂ , and 
they are not empty; 

(4) The fringe of the outer of A is equal to the boundary of the outer of A and they 
are not empty: ∅≠∂= == )()( AAl . 

Proof:  
(1) Since the core of simple fuzzy region A is open, the fringe is closed, which is 

equal to the boundary. They are not empty. Suppose ∅=∂A , then 
=⊕ ∪= AAX . Then X is not connected. Therefore, ∅≠∂A . 

(2) It is obvious according to (1). 
(3) The first part is obvious since the fringe is equal to the boundary. Suppose 

∅=∂ Ae , then AAA i∂∪= ⊕ . Then A is not open-connected. Therefore, 
∅≠∂A . 

(4) The first part is because the outer is open. The second part is because X is 
connected.  

 
Proposition 4.22(1) shows that, for a simple fuzzy region, the fringe is equal to the 
boundary. For simplification, we will write the fringe Al  of a simple fuzzy region as 
the boundary A∂ , and denote the internal fringe Ail  of a simple fuzzy region by the 
internal boundary Ai∂ ; and denote the frontier by Ae∂ .  
 
Proposition 4.23 Let A be a simple fuzzy region in a connected fts X. 

(1) The interior of the boundary oA)(∂  is regular open; 
(2) The core of the boundary of A is empty: ∅=∂ ⊕)( A ; 
(3) The boundary of the boundary is equal to the boundary of the boundary of A: 

)( AA ∂∂=∂ ; 
(4) The boundary is equal to the union of the boundary of the core and the 

boundary of the closure of A: )()( −⊕ ∂∪∂=∂ AAA . 
Proof:  

(1) Since ⊕A  is regular open, cA⊕  is regular closed. And coA⊕  is regular open. 
Therefore cooocoo AAAAAA ⊕⊕ ∩=∩==∂ )()()( l . oA)(∂  is regular open. 

(2) ∅==∂ ⊕⊕ )()( AA l . 
(3) )()()( AAAA ∂∂=∂∂∪∂=∂ ⊕ . 
(4) Since A is closed, )( −∂=∂ AA . Since ∅=∂∩ ⊕⊕ )(AA , ∅=∩⊕ AA l , and 

Al  is closed, we have AAA ∂=⊆∂ ⊕ l)( . Therefore, )()( −⊕ ∂∪∂=∂ AAA . 
 
Proposition 4.24 Let A be a simple fuzzy region in a connected fts X. The interior of the 
boundary of the core of A is empty, i.e., ∅=∂ ⊕ oA ))(( . 
Proof: )()( ⊕⊕ ∂= AAl  according to Proposition 4.9. According to proposition 4.5(5) we 
have ∅=∩=∩ ⊕⊕⊕⊕⊕ )()( AAAA ll . If ∅≠⊕ oA ))((l , then ooo AAA ⊕⊕⊕ ⊇∪ ))((l  
and ⊕A  is not regular open. Contradiction! Therefore, ∅==∂ ⊕⊕ oAA ))(())(( l . 
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4.4.5 A simple fuzzy region in 2~R  

In Section 2.5.9, we have defined the fuzzy Euclidean space 2~R , which is induced from 
the cts with usual topology. Figure 4.12 shows a simple fuzzy region A in 2~R . In Figure 
4.12(1), the membership values of the simple fuzzy region A are represented by the 
height. Figure 4.12(2) is the planar representation so that the topological properties can 
be visualized more clearly. By such a definition, not only may the membership values at 
the boundary of the core be equal to 1, but there may also be some points whose 
membership values are equal to 1 although they do not belong to the core. In Figure 
4.12 the membership values on the line and the point are 1 but the line and the point 
belong to the fringe of the simple fuzzy region. The membership values of points of A’s 
interior on the line and the point are less than 1, and the membership values of points on 
the closure of A’s interior on the line and the point are also less than 1, but the 
membership values of points on A are equal to 1. Therefore the closure of its interior is 
less than A; A is not regular closed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 A simple fuzzy region in 2~R  
 
Figure 4.13 lists some impossible settings for a simple fuzzy region in 2~R . In Figure 
4.13(1), there is a point whose membership value is 0. It is not a simple fuzzy region 
since the interior is not regular open. Figure 4.13(2) shows a point whose membership 
value is less than 1 in the “area” of the core. The interior and the core are not regular 
open. In Figure 4.13(3) the fuzzy set is not regular closed. Figure 4.13(4) shows that the 
outer is not open-connected. In Figure 4.13(5) the boundary is not double-connected. 
Figure 4.13(6) shows that the internal fringe is not double-connected. 
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Figure 4.13 Some impossible settings of a simple fuzzy region in 2~R  
 
 

4.5 Topological relations between two simple fuzzy regions 
in 2~R  

4.5.1 Forms of intersection matrices in 2~R  

Since the fringe is equal to the boundary of a simple fuzzy region i.e., AA l=∂  
according to Proposition 4.9, then the 3*3-intersection matrix (1) can be written as: 
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And the intersection matrix (1’) can be written as: 
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The 4*4-intersection matrix can be written as: 
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For GIS applications, Warren’s boundary is adopted as the boundary for a simple fuzzy 
region. Therefore, if the topological relations between two simple fuzzy regions are 
identified based on the 3*3-intersection matrix, form (3) is more suitable than form (3’). 
Form (4) can be adopted if the topological relations are identified based on the 
4*4-intersection matrix. 
 

4.5.2 Some limitations on topological relations 

In general, the 3*3-intersection matrix will deduce 29=512 topological relations between 
two fuzzy sets in the fts. Since a simple fuzzy region is not a general fuzzy set, some 
limitations exist between two fuzzy regions. The following propositions show these 
limitations.   
 
Proposition 4.25 Let A and B be two simple fuzzy regions in a connected fts X. If A’s 
core does not intersect with B’s core, then A’s core does not intersect with the boundary 
of B’s core, and B’s core does not intersect with the boundary of A’s core, i.e., if  

∅=∩ ⊕⊕ BA , then ∅=∂∩ ⊕⊕ )(BA  and ∅=∂∩ ⊕⊕ )(AB . 
Proof: Suppose B’s core intersects with the boundary of ⊕A , that is DAB =∂∩ ⊕⊕ )( . 
Then ∅=oD  according to Proposition 4.24. This means, Xx∈∀ , 0)( =xD o . Then 

Dx ∈∀ λ , all pan-neighborhoods of λx  intersect with ⊕A  at λx , as well as y where 
)supp(supp(y) λx≠ . On the other hand, since ⊕⊆ BD , ⊕B  is a pan-neighborhood of 

λx .  Therefore, ∅≠∩ ⊕⊕ BA . Contradiction! The other part of the proposition can 
be proven in the same way. 
 
Proposition 4.26 Let A and B be two simple fuzzy regions in a connected fts X. If A’s 
core intersects with the boundary of B’s core, then it must intersect with B’s core, i.e., if 

∅≠∂∩ ⊕⊕ )(BA , then ∅≠∩ ⊕⊕ BA . 
Proof: Suppose A’s boundary cannot intersect with B’s boundary, then A’s boundary 
cannot intersect with the boundary of B’s core according to Proposition 4.26. 
Contradiction! 
 
Proposition 4.27 Let A and B be two simple fuzzy regions in a connected fts X. If A’s 
core intersects with B’s core and outer, then it must also intersect with B’s boundary, i.e., 
if ∅≠∩ ⊕⊕ BA , and ∅≠∩ =⊕ BA , then ∅≠∂∩⊕ BA . 
Proof: We will show that B’s core is disjoint with B’s outer. Suppose 

∅≠=∩ ⊕⊕ CBA  and ∅≠=∩ =⊕ DBA , but ∅=∂∩ ⊕⊕ )(BA . Then 
⊕=∪ ADC  since C is crisp and =B  is crisp. Since C and D are open, therefore ⊕A  

is not open-connected. Contradiction! 
 
Proposition 4.28 Let A and B be two simple fuzzy regions in a connected fts X. If A’s 
core is disjoint with B’s core, and A’s boundary intersects with B’s core, then A’s 
boundary intersects with B’s boundary. That is if  ∅=∩ ⊕⊕ BA  and ∅≠∩∂ ⊕BA , 
then ∅≠∂∩∂ BA . 
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Proof: Suppose ∅=∩ ⊕⊕ BA  and ∅≠∩∂ ⊕BA  but ∅=∂∩∂ BA . Then 
∅=∂∩ ⊕⊕ )(AB  and ∅=∂∩ ⊕ )(BA  according to Proposition 4.24. Then 

∅=∩ ⊕BA .  Therefore, ∅=∩∂ ⊕BA . Contradiction! 
 
Proposition 4.29 Let A and B be two simple fuzzy regions in a connected fts X. If A’s 
core and boundary intersect with B’s boundary, then the boundary of A’s core intersects 
with B’s boundary. That is, if ∅≠∂∩⊕ BA  and ∅≠∂∩∂ BA , then 

∅≠∂∩∂ ⊕ )(AB . 
Proof: Let ∅≠∂∩⊕ BA  and ∅≠∂∩∂ BA . Suppose ∅=∂∩∂ ⊕ )(AB . Then 

CAB =∩∂ −⊕  is closed and DAB c =∩∂ ⊕  is closed. Then DCB ∪=∂ . 
Contradiction! 
 

4.5.3 Topological relations based on empty/non-empty contents in 
2~R  

Topological relations between two simple fuzzy regions can be identified by using the 
3*3-intersection matrix (3) in the fts. We will identify the topological relations between 
two fuzzy regions in fuzzy Euclidean space 2~R . The fuzzy region is further limited to a 
two-dimensional bounded set. The following conditions, which hold between the 
topological properties of two crisp regions in the crisp fts, also hold in 2~R  according 
to the above propositions: 
 

(1) The outers of two fuzzy regions intersect each other; 
(2) Any part of one fuzzy region must intersect at least one part of the other fuzzy 

region, and vice versa; 
(3) If one fuzzy region’s core intersects the other’s core and outer, then it must 

also intersect the other’s boundary, and vice versa; 
(4) If both cores are disjoint, then one fuzzy region’s core intersects the other’s 

boundary, or the other’s outer, and vice versa; 
(5) If both cores are disjoint and one fuzzy region’s boundary intersects the 

other’s core, then the two boundaries must intersect each other, and vice versa; 
(6) If one fuzzy region’s core intersects the other’s outer, then its boundary must 

also intersect the other’s outer, and vice versa; 
(7) If one fuzzy region’s core is a subset of the other fuzzy region, then its 

boundary must intersect the other, and vice versa; 
(8) If one fuzzy region’s core does not intersect the other fuzzy region, then its 

core must intersect the other’s outer, and vice versa; 
(9) If both cores do not intersect each other, then at least one boundary must 

intersect its opposite outer; 
(10) If both boundaries intersect the opposite cores, then the boundaries must also 

intersect each other; 
(11) If one fuzzy region’s boundary intersects the other’s core and outer, then it 

must also intersect the other’s boundary, and vice versa; 
(12) If one fuzzy region is a subset of the core of the other, then its outer must 

intersect the other’s core, and vice versa. 
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Under such conditions, 44 relations between two regions in 2~R  can be identified (refer 
to Appendix 1). The number is the same as for the approach in Chapter 3 and the 
algebraic model by Clementini and De Felice (1996). If two simple fuzzy regions 
degenerate into simple crisp regions, then only eight relations can be identified. If the 
4*4-intersection matrix is adopted, then 152 topological relations can be identified 
(refer to Appendix 2) in 2~R  by changing the interior, the boundary of the boundary, 
the interior of the boundary and the exterior into the core, the frontier, the internal 
boundary and the outer, under the 12 conditions that are listed in Section 3.7.2. 
 

4.5.4 More topological invariants 

The above interpretation of topological relations is based on the topologically invariant 
“empty/non-empty” dichotomy. When the intersection is empty, i.e., ∅=∩ BA , it 
means ,Xx∈∀  if 0)( >xA , then 0)( =xB . This result is the same as in a cts. In cts, 
when the intersection is non-empty, i.e., ∅≠=∩ CBA , we have ,Cx∈∀  1)( =xA , 
and 1)( =xB .  For example, if ∅≠=∂∩∂ CBA  in the cts, then whenever 1)( =xC  
we have 1)()( =∂=∂ xBxA .  
 
In the cts, the comparison can only be done crisply. However, there are more 
requirements when spatial objects are represented fuzzily. For example, there are two 
fuzzy spatial objects: grassland and bush. Someone would like to know which one is the 
dominating feature on a piece of land. Therefore, the comparison should be done at the 
level of membership values of these two objects.  
 
Based on the above definitions and the intersection matrices, it is possible to identify 
more topological relations to answer these kinds of questions.     
 
Definition 4.30 Let A and B be two simple fuzzy regions in a connected fts X, and 

∅≠=∩ CBA . Denote )(supp| CAA c ∩=  and )(supp| CBB c ∩= . Define four 
comparative (relationships) =⊆⊇≠ ,,,  between cA |  and cB | :  

(1) cc BA || ≠ : Xx∈∃ ,  )(|)(| xBxA cc >  and Xy∈∃ , )(|)(| yByA cc < ; 
(2) cc BA || ⊇ : Xx∈∀ , )(|)(| xBxA cc ≥  and Xy∈∃ , )(|)(| yByA cc >  
(3) cc BA || ⊆ : Xx∈∀ , )(|)(| xBxA cc ≤  and Xy∈∃ ,  )(|)(| yByA cc <  
(4) cc BA || = : Xx∈∀ , )(|)(| xBxA cc =  

  
Figure 4.14 shows the intersection between A and B.  
  
 
 
 
 
 
 

Figure 4.14 Intersection between two simple fuzzy regions 

A B

Supp(C)
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These four comparatives are topological invariants. Let f be a (fuzzy) homeomorphic 
mapping.  Since f is point preserving, i.e., λλ ))(()( xfxf = , if 0)(|)(| >≥ xBxA cc , 
then 0))(|())(|( >≥ xBfxAf cc . The remaining comparatives can be proved in the 
same way. 
 
For two simple fuzzy regions A and B, write cA |⊕ , cA |∂ , and cA |=  for the 
intersection parts of ⊕A , A∂  and =A , and cB |⊕ , cB |∂ , cB |=  for the intersection 
parts of ⊕B , B∂ , and =B , respectively. When the nine intersections ⊕⊕ ∩ BA , 

BA ∂∩⊕ , =⊕ ∩ BA , ⊕∩∂ BA , BA ∂∩∂ , =∩∂ BA , ⊕= ∩ BA , BA ∂∩=  and 
== ∩ BA  are non-empty, the comparison between cA |  and cB |  offers different 

options for mutual relations. 
(1) There is only one relation between cA |⊕  and cB |⊕ : cc BA || ⊕⊕ = , since 

Xx∈∀ 1)(|)(| == ⊕⊕ xBxA cc . 
(2) Four relations exist between cA |∂ and cB |∂ : cc BA || ∂⊇∂ , cc BA || ∂⊆∂ , 

cc BA || ∂=∂  and cc BA || ∂≠∂  when the boundaries are not crisp. 
(3) There is only one relation between cA |⊕  and cB |∂ : cc BA || ∂⊇⊕  since 

1)(| =⊕ xA c  when 0)(| >⊕ xA c , and 1)(| =∂ xB c  cannot hold for 

cBx |∂∈∀ λ . 
(4) Similar to (3), there is only one relation between cA |∂  and cB |⊕ : 

cc BA || ⊕⊆∂ . 
(5) There is only one relation between cA |∂  and cB |= : cc BA || =⊆∂ .  

Correspondingly, cc BA || ∂⊇=  between cA |=  and cB |∂ . 
(6) There is only one relation between cA |⊕  and cB |= : cc BA || =⊕ = .  

Correspondingly, cc BA || ⊕= =  between cA |=  and cB |⊕ . 
(7) There is only one relation between cA |=  and cB |= : cc BA || == = . 

 
Based on these options, the 3*3-intersection matrix for two simple fuzzy regions A and 
B can be adjusted. Denote the empty intersection by 0. The possibilities for topological 
relations are described in the following matrix: 
 

















=⊇=
⊆=≠⊆⊇⊆
=⊇=

=
/0/0

/0////0/0
/0/0/0

3*3I                      (5) 

 
There are 41 non-empty and three empty sets (Relation no. 1, 39 and 40) between the 
boundary-boundary intersections in the 44 relations between two simple fuzzy regions 
(see Appendix 1). Therefore, between two simple fuzzy regions there are 41*4 + 3 = 
167 possible topological relations. When the simple fuzzy regions degenerate into 
simple crisp regions, the relations between boundaries will be “=”.   
 



Chapter four 
 

 96 

4.5.5 Topological relations between two real simple fuzzy regions 
in 2~R  

The above 167 topological relations are realizable between two simple fuzzy regions. 
However, some of them correspond to extreme conditions. For example, the sixth 
relation can be decomposed into four relations (Figure 4.15). 
 
In Figure 4.15, the intersection between BA ∂∩∂  includes four settings: BA ∂≠∂ (6a), 

BA ∂⊆∂ (6b), BA ∂⊇∂ (6c) and BA ∂=∂ (6d). Relations (6c) and (6d) are realizable 
under extreme conditions. Relation (6d) requires that )( ⊕∂∩∂∈∀ BAxλ , 1)( =∂ xA . 
This occurs very seldom in GIS applications since it asks that A’s boundary has some 
crisp points. In order to avoid this case, we can refine the definition of the simple fuzzy 
region into a real simple fuzzy region. 
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Figure 4.15 Four settings of Relation (6) in 2~R  
 
 
Definition 4.31 Let A be a simple fuzzy region in a connected fts. A is called a real 
simple fuzzy region if (1) Xx∈∀ , 1))((0 <∩< −⊕ xAA c , and 1))(( =∂ ⊕ xA ; (2) 

∅=∩ −⊕−= AA .  
 
A real simple fuzzy region cannot degenerate into a simple crisp region, since −⊕∩ AA  
is not empty. Condition (1) indicates that the boundary of a fuzzy region contains some 
points that are not crisp. Condition (2) shows that the complement of the interior of the 

Relation (6) in Appendix 3.1 

 A B
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support of a fuzzy region (which can also be regarded as a simple crisp region) cannot 
intersect the closure of the core of the region (which is also a simple crisp region). In 
other words, X is Q-separated into the core and the outer by the support of the boundary. 
Figure 4.16 shows a real simple fuzzy region in 2~R . 
 
 
 
  
 
 
 
 
 
 

Figure 4.16 A real simple fuzzy region in 2~R  
 
 
Proposition 4.32 Let A and B be two real simple fuzzy regions. If A’s boundary 
intersects with B’s core and boundary, respectively, then cc BA || ∂=∂  and cc BA || ∂⊇∂  
between the boundary of A and the boundary of B are not realizable. 
Proof: Let ∅≠=∂∩∂ CBA  and ∅≠=∩∂ ⊕ DBA . Then ∅≠∂∩∂ ⊕ )(BA  
according to Proposition 4.29. Let EBA =∂∩∂ ⊕ )( . Assume that cc BA || ∂=∂ , then 

1)(| =∂ xA E  since 1)(|)( =∂ ⊕ xB E  Xx∈∀ . Then ))(()(| xAxA E
⊕∂=∂  according 

to condition (1) of Definition 4.32. (1) When ⊕+⊕ ≠∩ BAB , then ∅≠∩ =⊕ AB  and 
∅≠∂∩ =⊕ )(AB . Since  ∅≠∂∩⊕ AB  it follows that ∅≠∩∂ =⊕ AB )(  and 

∅≠∂∩∂ =⊕ )()( AB . That is, Xy∈∃ , 0))(())(( ≠∂∧∂ =⊕ yAyB  and )( =∂ A  
intersects A∂  on y. Then ∅≠∩∂ −=⊕ AA )( . Contradiction! (2) When 

⊕+⊕ =∩ BAB , then EBx |)( ⊕∂∈∀ λ . We have ))(())(( xBxA ⊕⊕ ∂=∂ . Suppose there 
is a subset P of )( ⊕∂ B  such that ∅=∂∩ AP . Then ⊕⊆ AP , ⊕⊕ ⊇ BA , and 

∅=∩∂ ⊕BA . Contradiction! Therefore, the assumption cc BA || ∂=∂  is wrong and 

cc BA || ∂=∂  between the boundary of A and the boundary of B is not realizable. If we 
change the assumption cc BA || ∂=∂  to cc BA || ∂⊇∂ , the above procedure shows that it 
cannot hold either. 
 
Similarly, if B’s boundary intersects A’s core and boundary, respectively, then 

cc BA || ∂=∂  and cc BA || ∂⊆∂  between the boundary of A and the boundary of B are 
not realizable. 
 
Under the limitation of Proposition 4.32, 77 topological relations between two real 
simple fuzzy regions can be derived (see Appendix 3). The topological invariants of 
relationships expand the topological relations between two regions from the 
“horizontal” level to the “vertical” level, where horizontal refers to whether the 
intersection of two topological parts is empty or not, and vertical refers to the 
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comparison between membership values of two topological parts when there is a 
non-empty intersection.   
 

4.6 Comparisons  

4.6.1 Comparison of topological spaces 

We have introduced several spaces: crisp topological space ),( 2 dR , crisp fuzzy 

topological space ),~( 2 CR , and induced fuzzy topology space ),~( 2 δR  or 2~R . The 

power set of 2~R  of cts ),~( 2 CR  is equal to the power set of 2~R  of induced fts 

),~( 2 δR . It contains the power set of 2R  of cts ),( 2 dR , since the power set of 2~R  
contains fuzzy sets but the power set of 2R  is just the collection of crisp subsets of 

2R . However, the topology C of ),~( 2 CR  is equal to the topology d of ),( 2 dR . They 

are coarser than the induced topology δ of ),~( 2 δR . The topology C of ),~( 2 CR  is 

actually a special case of ),~( 2 δR . They are illustrated in Figure 4.17. 
 
 
 
 
 
 
 
 
 
 

Figure 4.17 Comparisons between power sets and topologies 
 
 

4.6.2 Comparison of definitions  

We have also introduced two definitions of a simple fuzzy region. Definition (1) in 
Chapter 3 is based on the crisp fts, and definition (2) in this chapter is based on a 
general fts. Although definition (2) is defined in the general fts, it should be noticed that 
some fuzzy sets may be a simple fuzzy region in ),~( 2 CR , but not a simple fuzzy region 

in ),~( 2 δR . For example, define a fuzzy set A to be a fuzzy closed disk in 2~R : 
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Then A is not closed in the induced fts ),~( 2 δR  (Figure 4.18). However, the support of 

A in crisp fts ),~( 2 CR  is closed. Therefore, it is a simple fuzzy region in ),~( 2 CR , but 

Power set of 2~R  

Power set of 2R  

Topology of ),~( 2 δR  

Topology of ),~( 2 CR =  
Topology of ),( 2 dR  



Topological relations in a general fuzzy topological space 

 99 

it is not a simple fuzzy region in the induced fts ),~( 2 δR  since A is not an upper 
semicontinuous mapping from 2R  to [0,1]. 
 
 
 
 
 
 
 
 
 
 

Figure 4.18 A fuzzy disk is a simple 
fuzzy region in ),~( 2 CR  

 

Figure 4.19 A fuzzy disk is a simple 
fuzzy region in ),~( 2 δR  

In ),~( 2 δR , A will be a simple fuzzy region if 
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This is more suitable for the real GIS applications (Figure 4.19).  
 
Definition (1) is similar to the definition of a region with a broad boundary that was 
defined by Clementini and Di Felice (1996). Since their definition is defined in the cts, 
the broad boundary can be regarded as a crisp closed set in the cts, which is projected 
from the fuzzy set onto the crisp plane. 
 
Definition (1) is just based on the crisp fts, in which the membership values of fuzzy 
sets are neglected since every open set and every closed set are crisp. Definition (2) is 
defined in a real fts, such that it considers the fuzzy sets to be open or closed. Therefore 
definition (2) will be adopted, and definition (1) can be regarded as a draft version of a 
simple fuzzy region.  
 

4.6.3 Comparison of different approaches 

We have also established several intersection matrices in the fts to identify the 
topological relations between fuzzy sets. The intersection matrices (1) and (1’) will be 
equal to intersection matrix (1) in Chapter 3 when an fts is a crisp fts. Therefore, the 
intersection matrix (1) in Chapter 3 can be regarded as a special form of the intersection 
matrices (1) and (1’) in the general fts.  
 
Although definition (1) is a draft version of the formal definition of a simple fuzzy 
region, the topological relations between two simple fuzzy regions based on definition 
(1) are the same as the topological relations between two simple fuzzy regions based on 
definition (2) when the empty/non-empty topological invariants are adopted. This is 
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x
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because, if a fuzzy set A is a simple fuzzy region in ),~( 2 δR , the support of A is still a 

simple fuzzy region in ),~( 2 δR . Therefore, the topological matrices are universally 
applicable no matter in which fts a simple fuzzy region is defined.   
 
The shortcoming of the 3*3-intersection matrix and the 4*4-intersection matrix defined 
in Chapter 3 is that they cannot be adopted for identifying the topological relations 
between two simple fuzzy regions in terms of membership values. This is the same in 
the algebraic model. Intersection matrix (1) can identify more topological relations 
between two simple fuzzy regions than either the intersection matrix (1) in Chapter 3 or 
the 9-intersection matrix.  
 
The above comparisons can be summarized as follows: 

(1) Simple fuzzy regions can be defined in different topological spaces; 
(2) The intersection matrices can be derived from different topological spaces. All 

the 3*3-intersection matrices and the 4*4-intersection matrix are applicable to 
identify the topological relations between two simple fuzzy regions no matter 
in which topological space a simple fuzzy region is defined. 

(3) The intersection matrices in this chapter can identify more topological 
relations than the intersection matrices in Chapter 3.  

 

4.7 Conclusions and discussions 
This chapter proposes another approach for identifying topological relations between 
simple fuzzy regions. The basic idea is to derive the topological properties that are 
mutually disjoint in a general fts. Many topological properties are found and they are 
mutually disjoint. Two 3*3-intersection matrices and a 4*4-intersection matrix are 
introduced in a general fts. These matrices can be adopted to derive the topological 
relations between two fuzzy sets. 
 
Another contribution is the formal definition of a simple fuzzy region in a general fts. 
The definition is based on the core, the internal fringe, the frontier and the outer of a 
fuzzy set in the fts. This definition is better applicable for GIS applications than the 
definition in Chapter 3 that is derived based on the interior and the boundary and the 
exterior of a fuzzy set in the crisp fts, because it considers a finer structure of a fuzzy set 
in the fts. The definition of a simple fuzzy region in Chapter 3 can be regarded as a draft 
version of the definition of a simple fuzzy region.  
 
Three intersection matrices are derived based on the topological properties of two fuzzy 
sets. Intersection matrix (1) is more suitable than intersection matrix (1’) for identifying 
the topological relations between two simple fuzzy regions. The 4*4-intersection matrix 
can be formulated if the fringe is decomposed into the internal fringe and the frontier of 
a fuzzy set. 
 
In general, these intersection matrices are different from the intersection matrices 
derived in Chapter 3, since they are based on different topological properties. However, 
they are all applicable for deriving topological relations between two simple fuzzy 
regions no matter in which topological space a simple fuzzy region is defined. 



Topological relations in a general fuzzy topological space 

 101 

Forty-four (44) and 152 topological relations can be identified between two simple 
fuzzy regions in the induced fuzzy topological space of the usual Euclidean space.  
 
In practice, there are more requirements when spatial objects are represented fuzzily. 
Since the intersection matrices are derived in the general fts, it is possible to identify 
more topological relations according to the membership values of fuzzy spatial objects. 
Based on the topological invariants of four comparisons in the fts, 77 relations are 
identified between two real simple fuzzy regions.  
 
The chapter investigates only topological relations between two simple fuzzy regions in 

2~R . They have to be extended to more complex fuzzy regions. Further research into 
relations between spatial objects of different dimensions is necessary to model all kinds 
of fuzzy spatial objects, including points, lines and regions, which will be shown in 
Chapter 5. 
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Chapter Five 

Modeling Fuzzy Spatial Objects and 

their Topological Relations 

 
 
 
 

5.1 Introduction 
Chapters 3 and 4 discussed the definition of a simple fuzzy region in a general fts and 
the topological relations between two simple fuzzy regions in the fuzzy Euclidean space 

),~( 2 δR , whose topology is induced from the crisp Euclidean space 2R . However, the 
topological relations between fuzzy point, fuzzy line and fuzzy region have not been 
formalized as yet.  In conventional GIS, a common approach to modeling spatial 
objects is oriented towards algebraic topology. In general, algebraic topology is a branch 
of topology that studies topology by using the algebraic method. In algebraic topology, 
the most primitive concepts are simplex and simplicial complex, as well as the cell and 
cell complex. These concepts have been used to model (crisp) spatial objects (Molenaar 
1998).  
 
In order to model fuzzy spatial objects in GIS, these concepts have to be extended from 
the crisp domain to the fuzzy domain. This chapter will introduce a data model to 
represent fuzzy spatial objects, including fuzzy points, fuzzy lines, and fuzzy regions by 
using algebraic topology. Many properties related to fuzzy spatial objects have been 
discussed, such as area, perimeter, length and distance (Rosenfeld 1985a, 1985b, 
Schneider 2000). This chapter will focus on the topological relations between spatial 
objects (Tang et al. 2003b). Section 5.2 reviews some basic concepts of algebraic 
topology and the conventional spatial modeling techniques based on algebraic topology. 
Section 5.3 proposes the definitions of fuzzy cell and fuzzy cell complex. Section 5.4 
provides a data model to represent fuzzy spatial objects, including fuzzy points, fuzzy 
lines and fuzzy regions. Section 5.5 identifies the topological relations between these 
fuzzy spatial objects. Section 5.6 presents conclusions and discussions. 
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5.2 Algebraic topology and spatial data modeling 

5.2.1 Simplex and simplicial complex 

The main idea of algebraic topology is to consider two topological spaces to be 
equivalent if they have “the same shape” in a sense that is much broader than 
homeomorphisms (Hatcher 2002). In general, algebraic topology can be separated into 
the two branches of homology and homotopy theory. With regard to spatial data 
modeling in this thesis, the whole theory is not needed; instead, we just discuss some 
basic concepts of algebraic topology.  
 
In algebraic topology, some complicated spaces are built based on “bricks”. One of 
these bricks is a simplex. Intuitively speaking, a simplex is the simplest geometric 
figure of a respective geometric dimension, i.e., a point in a zero-dimensional space, a 
straight line segment in a one-dimensional space, a triangle in a two-dimensional space 
(Kainz 2004).  
 
Formally, a p-simplex ps  in nR  is generated by a point set ),...,,( 10 pxxx , where 

np ≤ : 

∑ ∑
= =

≥∀==
p

i
i

p

i
iiip iwherexs

0 0
0,1, λλλ  

We also write a p-simplex ps  as a p-dimensional simplex. The points ix  are the 
vertices of simplex ps . The numbers iλ  are called the barycentric coordinates of a 
simplex. The points where all barycentric coordinates are greater than 0 are called the 
internal points of the simplex. The remaining points, where at least one of the 
barycentric coordinates is 0, are called the edge points of the simplex. The set of all 
edge points is called the edge of the simplex. Let s, t be two simplexes and pk ≤ . If all 
vertices of simplex kt  are vertices of simplex ps , then kt  is called a k-face of  ps . 
If  pk < , then kt  is called a proper face of ps .  
 
Figure 5.1 shows a zero-dimensional simplex, one-dimensional simplex, and 
two-dimensional simplex.   
 
 
 
 
 
 
 
 
 

Figure 5.1 0-simplex, 1-simplex and 2-simplex 
 
In Figure 5.2, the two 0-simplexes are the proper faces of the 1-simplex; and a 
2-simplex has three zero-dimensional proper faces and three proper one-dimensional 

0-simplex (point) 

1-simplex (closed line segment) 

2-simplex (triangle)
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faces.    
 
Let S be a finite set of simplexes that fulfils the following conditions: 

(1) If the simplex ps  is an element of S, then each face of ps  belongs S; 
(2) For any two simplexes in S, the intersection of these two simplexes is either 

empty or a common face. 
 
Then S is called a simplicial complex. A finite simplicial complex is a simplicial 
complex if the collection of simplexes is finite.  
 
A simplicial complex is not a topological space. However, simplexes are subsets of nR . 
Let’s investigate the topology of a finite complex K. Let K  be the subset that is the 

union of finite simplexes of K in nR . Giving each simplex s its natural topology as a 
subspace of nR  (where n is the largest dimension of all simplexes), we then topologize 
K  by declaring a subset A of K  to be closed in K  if sA∩  is closed in s for 

each s in K . It is easy to see that this defines a topology on K  , because any finite 

unions and arbitrary intersections are still in K  since A and s are all closed in K . 

Since simplexes are finite, the topology of K  is equivalent to the topology K  

inherited as a subspace of nR . For suppose K  is finite and A is closed in K  , then 

sA∩  is closed in s and hence closed in nR . Then we can imbed K  into nR  if K 

is a finite simplicial complex. The space K  is called the polytope of K.  
 
The structure of the simplicial complex can be used to model spatial objects. A more 
convenient structure is the cell complex, which is built based on cells. 
 

5.2.2 Cell and cell complex 

In Chapter 2, an open disk of point x is defined as a set whose radius ε<r  )( +∈Rε  
around x in the Euclidean space 2R . A closed disk of point x is defined as a set whose 
radius ε≤r  )( +∈ Rε  around x in the Euclidean space 2R .  An n-dimensional open 
disk noD )(  of point x is a set whose radius ε<r  )( +∈Rε  around x in the Euclidean 
space nR . An n-dimensional closed disk nD  of point x is a set whose radius ε≤r  

)( +∈ Rε  around x in the Euclidean space nR . Since point x is arbitrarily chosen, we 
can neglect point x in the definition of open (or closed) disk. In order to remain 
consistent with the definition of a simplex, we refer to Munkres’s definition of a cell 
(Munkres 1984, compare with Hatcher 2002, Rotman 1988). An n-dimensional cell ne  
(or n-cell) is a space that is homeomorphic to an n-dimensional closed disk nD . An 
n-dimensional open cell ne  is a space that is homeomorphic to an n-dimensional open 
disk noD )( .  
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The closure of an n-cell is just the n-cell. The boundary of an n-cell is defined as the 
boundary of the n-cell in nR . The interior of an n-cell is the interior of the n-cell in 

nR . The interior of an n-cell is equivalent to an open n-cell. 
 
According to the definition, a 0-cell is a point. It is a closed set in nR . An open 0-cell is 
still the point. It is open in 0R , but it is not an open set in nR  when 0>n  . The 
boundary of a 0-cell is empty. A 1-cell is a closed line segment in R. Its boundary is its 
two end points. A 2-cell is a closed disk in 2R . Its boundary is a 1-sphere. Figure 5.2 
shows these cells. 
 
  
 
 
 
 
 
 

Figure 5.2 0-cell, 1-cell and 2-cell 
 
A cell complex X is a space and a collection of disjoint open cells n

ie  whose union is X 
such that: 

(1) X is Hausdorff; 
(2) For each open n-cell n

ie  of the collection, there exists a continuous mapping 
XDf n

i →:  that maps noD )(  homeomorphically onto n
ie  and carries 

)( nD∂  into a finite union of open cells, each of dimension less than n;  
(3) A set A is closed in X if n

ieA∩  is closed in n
ie  for each i.  

 
Let X be a cell complex, and Y be a subspace of X that equals a union of open cells of X. 
Suppose that for each open cell n

ie  of X contained in Y, its closure is also contained in 
Y. Y is a closed set in X and it is a cell complex in its own right. It is called a 
sub-complex of X. In particular, the subspace pX  of X that is the union of the open 
cells of X of dimension at most p satisfies these conditions. It is thus a sub-complex of X, 
which is called the p-skeleton of X.  
 
A finite cell complex X is a cell complex for which the collection of open cells is finite. 
Call each 0,1,…,n-cell in X a face of X. A proper face is any 0,1,…,(n-1)-cell in X. A 
finite cell complex can also be defined by the faces of cells. A finite cell complex X is a 
collection of cells such that (1) every face of a cell of X is in X, and (2) the intersection 
of two cells is either empty or a common face of both cells. 
 

5.2.3 Spatial data modeling 

The structure of cell complex can be easily applied to modeling (crisp) spatial objects. 
For two-dimensional spatial data modeling, we just consider a complex X is embedded 

1-cell (closed line segment) 

0-cell (point) 

2-cell (closed disk) 
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in 2R . 
 
Let A be a two-dimensional sub-complex of two-dimensional cells of finite complex X. 
The union of its cells is still two-dimensional. Since the topology of A is equivalent to 
the topology of A inherited as the subspace of 2R , we can adopt the interior, the 
boundary, and the exterior of the union directly in 2R . A is called a simple region in 

2R  such that the union of cells is a connected regular closed set, with a connected 
boundary and a non-empty connected interior in 2R .  
 
Let A be a one-dimensional sub-complex of one-dimensional cells of finite complex X. 
The union of its cells is one-dimensional. The interior, the boundary and the exterior of 
a sub-complex in R is different from the interior, the boundary and the exterior of a 
sub-complex in 2R . However, the interior, the boundary and the exterior of a 
sub-complex in R are still topological properties of a sub-complex of one-dimensional 
cells in 2R . We can adopt the interior, the boundary and the exterior of the union in R. 
A is called a simple line in 2R  such that the union of cells is connected, it is not 
self-intersecting and does not form a loop in 2R , and the boundary of the union has 
two distinct points in R.  
 
A is a point if A is a 0-cell in 2R .  
 
A simple region, a simple line and a point are shown in Figure 5.3. 
 
 
 
 
 

Figure 5.3  Simple region, simple line and point 
 
The topological relations between these spatial objects can be identified based on the 
9-intersection matrix. The topological relations between two simple regions can be 
identified by using the 9-intersection matrix, since the definition of the exterior, the 
boundary and the interior of a simple region is the same as the exterior, the boundary 
and the interior of a crisp set in the crisp topological space. The 9-intersection matrix 
can also identify the topological relations between a simple region and a point. In order 
to identify the topological relations between a simple region and a simple line, we have 
to adopt the interior, the boundary, and the exterior of a simple line in R for the 
9-intersection matrix. The interior, the boundary and the exterior of a simple line in R 
are still topological properties in 2R . This is because the boundary of a simple line in R 
is a set of two points, which is a closed set in 2R , and the interior of a simple line in R 
is the intersection of the simple line with 2R  minus the set of two points. They are still 
topological properties in 2R . 
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5.3 Fuzzy cell and fuzzy cell complex 

5.3.1 Fuzzy cell 

Similar to the definition of an (crisp) n-cell, we now extend the notion of cell and cell 
complex into the fuzzy domain. Define a Euclidean distance between two fuzzy points 

),...,( 21 na xxxp  and ),...,,( 21 nb yyyq in nR~  by: ∑
=

−=
n

i
iiba yxqpd

1

2)(),( . Define 

a fuzzy closed disk n
pD  of a fuzzy point ap  in nR~  by: }),(:{ rqpdqD bab

n
p ≤= . 

Define a fuzzy open disk o
p

nD )(  of a fuzzy point ap  in nR~  by: 

}),(:{)( rqpdqD bab
o
p

n <= . Let nR~  be equipped with fuzzy topology δ  that is 

induced from the Euclidean topology of nR . Then a fuzzy open disk o
p

nD )(  is open if 

it is a lower semicontinuous mapping from nR  to [0,1]. A fuzzy closed disk n
pD  is 

closed if it is an upper semicontinuous mapping from nR  to [0,1]. nR~  is normal, 
p-normal and connected.  
 
We define a fuzzy n-cell ne

~
 by a fuzzy subset of nR~ , such that its space is 

homeomorphic to a fuzzy closed disk and it is an upper semicontinuous mapping from 
nR  to [0,1]. A fuzzy open n-cell ne~  is a fuzzy subset of nR~ , such that its space is 

homeomorphic to a fuzzy open disk and it is a lower semicontinuous mapping from nR  
to [0,1].  
 
By definition, a fuzzy 0-cell is a fuzzy point. A fuzzy 1-cell is a fuzzy closed line 
segment such that its support is a crisp 1-cell, and the membership function is an upper 
semicontinuous mapping from R to [0,1]. A fuzzy 2-cell is a fuzzy closed disk such that 
its support is a crisp 2-cell, and the membership function is an upper semicontinuous 
mapping from 2R  to [0,1]. Figure 5.4 shows these fuzzy cells. 
 
 
 
 
 
 
 
 

Figure 5.4 Fuzzy 0-cell, 1-cell and 2-cell 
 
A fuzzy n-cell is a fuzzy subset of nR~ . We adopt the dimension of its support in nR~ . 
That is, a fuzzy cell has dimension n if the dimension of its support is n.  
 
Unlike the crisp cell structure, a fuzzy n-cell has a vertical structure in terms of 
membership values. We say a fuzzy n-cell is a fuzzy n-sub-cell of a fuzzy n-cell if its 
support is equal to the support of the fuzzy n-cell and the membership value at each of 
its points is equal to or less than the value on that point of the fuzzy n-cell. Figure 5.5 

Fuzzy 0-cell 

Fuzzy 1-cell 

Fuzzy 2-cell 
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shows a fuzzy 2-cell and its fuzzy 2-sub-cells. A fuzzy n-cell may have an infinite 
number of fuzzy n-sub-cells.  
 
 
 
 
 
 
 
 

Figure 5.5 Vertical structure of a fuzzy 2-cell 
 
A fuzzy n-cell can be regarded as a subset of fuzzy Euclidean space nR~ . In the general 
fts, there are many topological properties, such as the closure, the interior, the boundary, 
the core, the fringe, the frontier, the internal, the internal fringe, the outer, the exterior 
and so on. In nR~  the fringe of a fuzzy set is equal to the boundary, the internal fringe is 
equal to the internal boundary, and the frontier is equal to the frontier of the boundary. 
We adopt the topological properties of a fuzzy n-cell in nR~ . That is, the closure of a 
fuzzy n-cell ne~  is just the fuzzy n-cell; the interior of a fuzzy n-cell is the interior of 

the fuzzy n-cell in nR~ , which is a fuzzy open n-cell ne~ ; the core ⊕
ne~  of a fuzzy n-cell 

is the crisp subset of the interior of the fuzzy n-cell in nR~ ; the boundary (or fringe) 

ne~∂  is the difference between the fuzzy n-cell and the core of the fuzzy n-cell; and the 

frontier n
ee~∂  of a fuzzy n-cell is the subset of the n-cell in nR~  where the membership 

value of the n-cell is greater than the membership value of the interior of the n-cell in 
nR~ . The difference between the boundary and the frontier is the internal boundary (or 

internal fringe) n
ie~∂  of a fuzzy n-cell. 

 
It should be noted that these topological properties are defined based on the fact that a 
fuzzy n-cell has the same dimension as the fuzzy Euclidean space. For example, the 
topological properties of a 2-cell are defined based on the fact that the dimension 2 of 
the 2-cell is equal to the dimension of 2~R . This is because these topological properties 
are different in different fuzzy Euclidean spaces. For example, the interior of a 2-cell is 
a fuzzy open disk in 2~R , but the interior of a 2-cell is empty in 3~R .  
  
In a crisp cell structure, the boundary of a cell has always lower dimension than that of 
the cell. For example, the boundary of a 2-cell is always one-dimensional. The boundary 
of a 1-cell is always composed of two end points, which is zero-dimensional. In a fuzzy 
cell structure, the boundary of an n-cell may have the same dimension as the n-cell. 
Figure 5.6 shows some forms of a 1-cell and 2-cell. Their topological properties are 
illustrated in Figure 5.7. 
 
 
 
 

…

Fuzzy 2-cell 

Fuzzy 2-sub-cell
Fuzzy 2-sub-cell

…
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Figure 5.6  Different forms of a fuzzy 1-cell and 2-cell 
 

5.3.2 Fuzzy cell complex 

In a crisp cell complex, each n-cell is attached onto p-cells where np < , and the 
dimension of the boundary of a crisp n-cell is always less than the dimension of the 
n-cell and that for fuzzy cells this does not hold. The boundary of a fuzzy n-cell may 
have the same dimension as the fuzzy n-cell. In order to define a fuzzy cell complex 
based on fuzzy cells, we define the external frontier of a fuzzy n-cell. The external 
frontier n

exe~∂  of a fuzzy n-cell is the subset of the frontier for which the distance 

1),( =ba yxd  around the center x in nR~ . The external frontier is one-dimension less 
than a fuzzy n-cell since it is homeomorphic to the boundary of the support of a fuzzy 
n-cell in nR~ . Figure 5.7 shows the external frontier and other topological properties. 
 
In general, the frontier, the external frontier and the boundary are different for a fuzzy 
cell. If a fuzzy n-cell is crisp, then the frontier, the external frontier and the boundary are 
the same. The internal boundary of a crisp n-cell is empty. Figure 5.7 shows these 
properties of the fuzzy 1-cell and fuzzy 2-cell (the last two figures) described in Figure 
5.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7 Topological properties of the fuzzy 1- and 2-cells in Figure 5.6 
 
 
Definition 5.1 A fuzzy cell complex X is a collection of disjoint fuzzy open cells n

ie~  

Core 

External frontier 

Boundary 

Frontier 

Internal boundary 
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whose union is X, such that: 
(1) The support of X is an induced space of a crisp Hausdorff topological space; 
(2) For each open fuzzy n-cell n

ie~  of the collection, there exists a continuous 
mapping )(supp)(supp: XDf n

i →  that maps the interior of a fuzzy closed 
disk noD )(  (fuzzy) homeomorphically onto n

ie~  and carries )( nex D∂  into a 
finite union of fuzzy open cells, each of dimension less than n;  

(3) A set A is closed in X if n
ieA ~

∩  is closed in n
ie  for each i.  

 
A finite fuzzy cell complex X is a fuzzy cell complex such that the cells are finite. Call 
each 0,1,…,n-cell in X a face of X. A proper face is any 0,1,…,(n-1)-cell. A fuzzy cell 
complex has the structure that each fuzzy n-cell is attached onto a p-cell where np <  
along the external frontier of each n-cell (n>0). Therefore a proper face is in the external 
frontier of fuzzy 1,2,…,n-cells. Since an n-cell has an n-sub-cell structure, a face also 
holds this structure. 
 
We simply call X a fuzzy complex. A subset of a complex is called a fuzzy sub-complex 
if it is a subset of the complex and still a fuzzy complex. A finite fuzzy cell complex X 
can be formed in terms of faces. X is called a fuzzy cell complex if (1) every face of a 
fuzzy cell of X is in X, and (2) the intersection of two cells is either empty or a common 
face of both fuzzy cells.  
 

5.4 Modeling fuzzy spatial objects 

5.4.1 Definition of fuzzy spatial objects 

In order to represent fuzzy spatial objects, we limit a fuzzy complex X to be finite and 
two-dimensional. Then X can be imbedded in 2~R . The topology of support of X is then 
equivalent to the topology of support of X that is inherited from 2~R .  We can adopt 
the concept of all the topological properties of a sub-complex in 2~R . We can define 
fuzzy spatial objects to be a fuzzy complex based on these topological properties.  
 
Definition 5.2 Let A be a sub-complex composed of fuzzy 2-cells ie  of finite fuzzy 

complex X. A is called a simple fuzzy region in 2~R  such that the union of fuzzy cells  

ieU  meets the following conditions in 2~R : 
(1) It is a non-empty proper double-connected closed set;  
(2) The interior, the core and the outer are double-connected regular open;  
(3) The support is equal to the support of the closure of the interior; 
(4) The boundary is double-connected and the internal boundary is a double- 

connected  open set;  
(5) The frontier is a closed set. 

 
Actually, in 2~R  condition (5) is trivial according to the definition of a fuzzy complex. 
It is also trivial that the core and the outer are regular open in 2~R . The internal 
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boundary is open also in 2~R . Therefore these conditions can be removed for a simple 
fuzzy region in 2~R . We just quote it for consistency with the formal definition of a 
simple fuzzy region. In 2~R  the fringe is equal to the boundary. Therefore, the fringe 
and the internal fringe are changed into the boundary and the internal boundary as usual. 
 
Definition 5.3 Let A be a sub-complex composed of fuzzy 2-cells of finite fuzzy complex 
X. A is called a fuzzy region in 2~R , such that the union of fuzzy cells  ieU  meets the 

following conditions in 2~R : 
(1) It is a non-empty proper double-connected closed set;  
(2) The interior is a double-connected regular open set;  
(3) The support is equal to the support of the closure of the interior; 
(4) The core, the internal boundary and the outer are respectively a collection of 

subsets such that these subsets are mutually disjoint and every subset is 
double-connected. 

 
Definition 5.4 Let A be a sub-complex composed of fuzzy 1-cells of finite fuzzy complex 
X. A is called a simple fuzzy line in 2~R  if the union of fuzzy cells ieU  meets the 
following conditions: 

(1) It is a non-empty double-connected closed set in 2~R ; 
(2) Its support is not self-intersecting and does not form a loop in 2~R , and is 

equal to the support of the closure of the interior in R~ ; 
(3) The interior is a non-empty double-connected regular open set in R~ . 
(4) The internal boundary is a collection of two subsets such that they are 

mutually disjoint and every subset is double-connected in R~ ; 
(5) The core is double-connected in R~ ;  

 
Definition 5.5 Let A be a sub-complex composed of fuzzy 1-cells of finite fuzzy complex 
X. A is called a fuzzy line in 2~R  if the union of fuzzy cells  ieU  meets the following 
conditions: 

(1) It is a non-empty double-connected closed set in 2~R ; 
(2) Its support is not self-intersecting and does not form a loop in 2~R , and is 

equal to the support of the closure of the interior in R~ ; 
(3) The interior is a non-empty double-connected regular open set in R~ ; 
(4) The core and the internal boundary are respectively a collection of subsets 

such that the subsets are mutually disjoint and every subset is 
double-connected in R~ . 

 
Definition 5.6 A fuzzy point is a fuzzy 0-cell in 2~R . 
 
A simple fuzzy region, a fuzzy region, a simple fuzzy line and a fuzzy line are 
illustrated in Figure 5.8. 
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Figure 5.8 Simple fuzzy region, fuzzy region, simple fuzzy line and fuzzy line 
 
 

5.4.2 Representation of fuzzy spatial objects 

A fuzzy spatial object abstracted from the real world can be easily expressed by a fuzzy 
complex. For example, a mountain can be represented by a fuzzy complex. This 
complex has two cores in 2~R  (Figure 5.9).  
 
 
 
 
 
 
 

Figure 5.9 Representation of a fuzzy spatial object 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10  Representation of fuzzy spatial objects 
 
When more fuzzy objects are involved, we can identify cells according to the cell 
complex structure. For example there are two fuzzy objects: forest (A) and grassland (B), 
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showing in Figure 5.10. In total there are six fuzzy 2-cells ( 321 ,, AAA , 321 ,, BBB ). 13 
fuzzy 1-cells (1, 2, 3, 4, 5, 6, 7, 8, 2’, 4’, 5’, 6’, 7’) and eight fuzzy 0-cells. The union of 

321 ,, AAA  and the union of 321 ,, BBB  constitute two fuzzy regions representing the 
forest and the grassland. 3B  is a common 2-cell of 32 , BA . It is actually a 2-sub-cell 
of 2A . 1-cell 2 is a common face of 21 , AA . 1-cell 2’ is a common face of 31 , BA .   
 

5.5 Topological relations between fuzzy spatial objects 

5.5.1 Topological relations between simple fuzzy regions 

The topological relations can be directly identified based on the 3*3-intersection matrix 
(1) in Chapter 4, since the definition of a simple fuzzy region is directly adopted for a 
simple fuzzy region in 2~R . Forty-four (44) topological relations can be realized 
between two simple regions when the empty/non-empty contents are applied as the 
topological invariants of the intersections. These relations can be further decomposed 
into 77 relations if the comparatives “⊆”,”⊇”,”=” and “≠” between the topological parts 
of two real fuzzy simple regions are adopted.  
 

5.5.2 Topological relations between simple fuzzy lines 

In order to identify the topological relations between two simple fuzzy lines in 2~R  by 
using the 3*3-intersection matrix (1) depicted in Chapter 4, we can replace the core, the 
fringe and the outer of a simple fuzzy line in 2~R  by the core, the fringe and the outer 
in R~ . This is because the core, the fringe and the outer of a simple line in R~  are still 
the topological properties in 2~R , since the core and the outer of a simple line in R~  
are crisp subsets in 2~R , and the fringe is the intersection of a simple line with the set 
that 2~R  intersects with the complement of the union of the above crisp sets in 2~R .  
 
Limitations (1) to (4) between two simple fuzzy regions (listed in Section 4.5.3) still 
hold between two simple fuzzy lines. Furthermore, there are other limitations between 
two simple fuzzy lines: 
 

(1) If the boundary of A does not intersect the boundary of B, and the core of A 
intersects the core and boundary of B, then the core of A must intersect the 
exterior of B, and vice versa; 

(2) If the core of A does not intersect the boundary of B, and the boundary of A 
does not intersect the core of B, and if both cores intersect each other and both 
boundaries intersect each other, then either both cores intersect the exterior of 
the other, or both cores cannot intersect the exterior of the other, and vice 
versa; 

(3) If both cores do not intersect each other, and both boundaries do not intersect 
each other, then their cores intersect the exterior of the opposite; 

(4) If both boundaries do not intersect the exterior of the opposite, then either 
both cores intersect the exterior of the other, or both cores cannot intersect the 
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exterior of the other;  
(5) If the core of A intersects all parts except the boundary of B, then the exterior 

must intersect with the core of B, and vice versa. 
 
By using the 3*3-intersection matrix (3) in Section 4.5.1, 97 relations can be identified 
between two simple fuzzy lines (Table 5.1). 
 
Table 5.1 Ninety-seven (97) relations between two simple fuzzy lines 

Matrix Illustration Matrix Illustration Matrix Illustration 
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5.5.3 Topological relations between simple fuzzy region and 
simple fuzzy line 

Besides limitations (1) to (4) in Section 4.5.3, there are five more limitations between a 
simple fuzzy region and a simple fuzzy line. 
 

(1) The core and the boundary of a fuzzy simple region always intersect with the 
exterior of a simple fuzzy line; 

(2) If the core of a simple fuzzy line is a subset of the support of the boundary of 
a simple fuzzy region, then the boundaries must intersect each other; 

(3) If both boundaries do not intersect each other, and the core of a simple fuzzy 
line is a subset of the core of a simple fuzzy region, then the closure of the 
simple fuzzy line is a subset of the core of a simple fuzzy region; 

(4) If both cores do not intersect each other, and the boundary of a simple fuzzy 
line intersects the core of a simple fuzzy region, then it also intersects the 
boundary of the simple fuzzy region; 

(5) If both cores intersect each other, and the core of a simple fuzzy region does 
not intersect the boundary of a simple fuzzy region, then it does not intersect 
the exterior of the simple fuzzy region. 

 
Thirty (30) relations between a simple fuzzy region and a simple fuzzy line are 
identified based on these limitations (Table 5.2). 
 
Table 5.2 Thirty (30) relations between a simple fuzzy region and a simple fuzzy 
line 

Matrix Illustration Matrix Illustration Matrix Illustration 

















111
100
100

)1(
   

















111
110
100

)2(
  

















101
110
100

)3(
  

















100
100
111

)4(
   

















111
101
101

)5(
  

















110
110
101

)6(
  

















111
110
110

)7(
   

















100
110
101

)8(
  

















101
110
110

)9(
  

















111
111
100

)10(
   

















101
111
100

)11(
  

















110
111
100

)12(
  

  

 



Chapter five 

 118 

 
Table 5.2 cont’d 

















100
111
100

)13(
  

















111
101
111

)14(
  

















101
101
111

)15(
  

















100
101
111

)16(
  

















101
111
101

)17(
  

















100
111
101

)18(
  

















111
111
101

)19(
   

















110
111
101

)20(
  

















110
110
111

)21(
  

















100
110
111

)22(
  

















110
111
110

)23(
 

















100
111
110

)24(
  

















111
111
110

)25(
   

















101
111
110

)26(
  

















111
111
111

)27(
  

















100
111
111

)28(
  

















101
111
111

)29(
 

















110
111
111

)30(
  

 
 

5.5.4 Topological relations between a fuzzy point and a fuzzy 
line/fuzzy region 

Since the boundary of a fuzzy point is empty, there is a strong limitation between a 
fuzzy point and a simple fuzzy line or a simple fuzzy region. That is, a fuzzy point is 
contained in only one support of parts of the line/region. There are three relations 
between a fuzzy point and a simple fuzzy line and three relations between a fuzzy point 
and a simple fuzzy region (Table 5.3).  
 
Table 5.3 Three relations between a fuzzy point and a simple fuzzy line/a simple 
fuzzy region 

Matrix Illustration Matrix Illustration Matrix Illustration 

















100
100
101

)1(
  

















100
101
100

)2(
 

















101
100
100

)3(
  

















100
100
101

)1(
   

















100
101
100

)2(
  

















101
100
100

)3(
  

 
 

5.6 Conclusions and discussions 
This chapter proposes a theoretic framework for modeling fuzzy spatial objects based 
on algebraic topology. The framework is a fuzzy cell complex structure that is 
constructed based on fuzzy cells. 
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A fuzzy cell is defined as a subset whose space is homeomorphic to a fuzzy open 
interval in the fuzzy Euclidean space. It is a natural extension of a crisp cell. The 
topological properties of a fuzzy cell such as the core, the boundary, the internal 
boundary are defined. A fuzzy cell complex can then be built based on fuzzy cells. It is 
an extension of a crisp cell complex.   
 
The structure of a fuzzy cell complex can be used to model fuzzy spatial objects. The 
formal definitions of fuzzy points, simple fuzzy lines, fuzzy lines, simple fuzzy regions 
and fuzzy regions are proposed based on the fuzzy cell complex in the fuzzy Euclidean 
space.   
   
The topological relations between simple fuzzy regions, simple fuzzy lines and fuzzy 
points are investigated since they are basic to spatial data modeling. The idea for the 
identification is based on the 3*3-intersection matrix, which results from fuzzy topology. 
Forty-four (44) relations between two simple fuzzy regions, 97 relations between two 
simple fuzzy lines, 30 relations between a simple fuzzy region and a simple fuzzy line, 
three relations between a fuzzy point and a simple fuzzy region, and three relations 
between a fuzzy point and a simple fuzzy line are derived. It can be easily perceived 
that the relations between fuzzy spatial objects are also just an extension of those 
between crisp spatial objects. If all fuzzy objects are crisp, the relations between these 
objects turn out to be crisp relations, just as the relations identified by Egenhofer and 
Herring (1990a). Therefore the framework of fuzzy cell complex is compatible with 
data models for crisp spatial objects.  
 
The above relations are all based on the 3*3-intersection matrix. More topological 
relations can be identified if the 4*4-intersection matrix is adopted. One hundred and 
fifty-two (152) relations can be identified between two simple fuzzy regions in 2~R . 
This is useful when more topological relations between two fuzzy spatial objects should 
be differentiated. These relations can be refined if the comparative invariants are 
adopted. For example, by using four comparatives in the 3*3-intersection matrix, 77 
relations can be identified between two real simple fuzzy regions. The same method can 
be adopted for the comparison between fuzzy lines and features of other dimensions. 
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Chapter Six 

Generating Fuzzy Land Cover Objects  

 
 
 
 

6.1 Introduction 
In previous chapters fuzzy spatial objects have been formally defined based on fuzzy 
topology, and the topological relations between fuzzy spatial objects have also been 
identified based on the intersection matrices. These frameworks should be applied to 
solve the practical problems in reality. Starting with this chapter, some practical issues 
on fuzzy spatial objects will be investigated.  
 
The first practical issue is how to generate fuzzy spatial objects. In conventional GIS, 
crisp spatial objects can be derived by many methods: digitizing, for instance manual 
digitizing and on-screen digitizing (automated or semi-automated); inputting from other 
data source, for instance GPS data; adopting processed data such as classification results 
of satellite images, etc. In principle, a fuzzy spatial object can also be generated by the 
above method. The only difference in generating fuzzy spatial objects is that we have to 
derive the membership values or membership functions of fuzzy spatial objects whereas 
this is not necessary for crisp spatial objects. When spatial objects are not fuzzy (for 
instance administrative boundaries), it is not necessary to model them in fuzzy mode. 
When there is some fuzziness in a spatial object, whether fuzzy or crisp, a spatial object 
is decided by the requirement of the application. For example, most land cover objects 
such as grassland contain spatial fuzziness, since the definition is not clear. If the 
application just addresses the area size, then the crisp representation of land covers is 
enough. However, if the application focuses on the changes, especially on gradual 
changes, it is better to represent the land cover objects that have fuzzy characteristics by 
fuzzy land cover objects.  
 
The key to generating fuzzy spatial objects is to deriving the membership values. In 
general, there are two kinds of methods: active and passive. In the active method, 
membership function and values are derived by experts or based on some knowledge. 
The passive method calculates the membership functions according to the data itself. 
Cheng et al. (2001) discussed the general processes of identifying fuzzy spatial objects. 
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They also proposed three models to form fuzzy objects using active and passive 
methods. However, the passive method, which was applied in TM image classification, 
needs more discussions, since the extent of fuzzy spatial objects covers too broad an 
area.   
 
This chapter discusses a composite method for forming fuzzy land cover objects (Tang 
and Kainz, 2003). Section 6.2 introduces the general procedure for forming fuzzy 
spatial objects by using the passive method. In Section 6.3, a composite approach is 
proposed for computing the membership values for the fuzzy land cover objects. 
Section 6.4 shows the situation of the test area. Section 6.5 discusses the generation 
procedures, which involve many steps such as classification, fuzzy convolution, 
rule-based processing etc. Section 6.6 discusses the accuracy of fuzzy land cover objects. 
The results show that the method is applicable for the generation of data-oriented fuzzy 
spatial objects. Finally the conclusions and discussions are summarized. 
 

6.2 General procedure for generating fuzzy spatial objects 

6.2.1 Procedure for forming fuzzy spatial objects 

The general procedures for identifying fuzzy spatial objects consist of three steps 
(Figure 6.1) (Cheng et al. 1997): analysis of fuzzy type of spatial objects, computation 
of membership values and evaluation of the accuracy of fuzzy spatial objects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 General procedure for forming fuzzy spatial objects 
 

6.2.2 Analysis of fuzzy type 

Understanding fuzzy type is the starting point for generating fuzzy spatial objects. At 
this step, the aspects that cause the fuzziness of spatial objects should be interpreted so 
as to ascertain whether they are related to certain applications.  

Computation of 
membership 
values 

Analysis of fuzzy type 

Design of initial membership function

Assignment of membership values 

Adjustment of fuzzy membership value

Evaluation of accuracy

Calculation of function parameters 



Generating fuzzy land cover objects 

 123 

 
In general two types of fuzziness exist in spatial objects: spatial extent fuzziness and 
thematic fuzziness (object definition). The thematic fuzziness exists when we cannot 
clearly define an object. For example, when we define a land cover type, although we 
try to determine each land cover clearly, the fuzziness is still inevitable in each class. 
When we browse the definition of forest in the USGS land cover standard (Anderson et 
al. 1976), we find it is defined as an area characterized by tree cover (natural or 
semi-natural woody vegetation, generally greater than 6 m tall); tree canopy accounts 
for 25 to 100% of the cover. In this definition, “natural”, “semi-natural” and “generally 
greater than 6 m tall” are fuzzy terms. Nor is the area size specified in the definition.  
Another kind of fuzziness is the spatial extent fuzziness. Sometimes, we can clearly 
define an object, but we cannot clearly obtain it. When a TM image is classified into 
land cover classes such as grassland, we will immediately find that some pixels are a 
mixture of grassland with some trees or dry land; some pixels have some grassland at 
one side and other land covers at the other side; and some pixels contain both of the 
above cases.  
 
In some applications, the location can be measured precisely, leaving the object 
definition fuzzy. In other applications, the definition is clear but the location cannot be 
measured precisely. In some cases, both definitions and locations contain fuzziness. In 
general, we should bear in mind which fuzziness is mainly concerned in the 
applications.   
 

6.2.3 Computation of membership values 

The computation of membership values should be done for all fuzzy spatial objects. 
Generally it consists of the following steps: 
 
(1) Design of initial membership functions 
 
After understanding which object fuzziness is concerned, the initial membership 
functions should be designed. The design is usually done by selecting one of the 
existing membership functions, such as triangular, trapezoidal, bell-shaped or Gaussian 
distribution, based on the fitness of the fuzziness of spatial objects with these functions. 
For example, if we subdivide the human stature into three fuzzy classes short, middle 
and tall, the trapezoidal membership functions (Figure 6.2) can be adopted as initial 
functions for short, middle and tall.  
 
 
 
 
 
 
 

Figure 6.2 Membership functions for human stature short, middle and tall 
 
(2) Calculation of parameters     
 

short middle tall 

height 

Membership 
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The methods of parameter calculation can be generally classified into two categories: 
active and passive. Usually the passive method will be adopted.  The active method 
will be selected when the passive method cannot be adopted for a certain application.   
 
(3) Assignment of fuzzy membership values 
 
After the membership function and its parameters are determined, the membership 
values can be calculated at each location of the spatial objects. Usually, each location is 
described by a pixel so that the membership values can be recorded at each pixel. 
Otherwise, the membership value has to be calculated at run-time in GIS models. 
However, this way is seldom adopted since it has to store the functions in the data 
model. 
 
(4) Adjustment of membership values 
 
In many cases, the membership functions and values have to be adjusted to meet the 
factual situation and the application requirements. Because of the complexity of spatial 
features and problems in data sampling, there could be errors in the membership 
functions or values. In some situations, although the membership values can reflect the 
factual situation, they are too complicated for applications. For example, the extents of 
spatial objects are too small. Thus the analyses are too time-consuming and the 
visualization is very poor. To minimize the above side effects, the membership values 
should be adjusted to facilitate the analysis.   
 

6.2.4 Evaluation of accuracy  

The evaluation of accuracy is the final step in forming fuzzy spatial objects. The 
evaluation can be done on two levels. The first level checks the errors in classification, 
that is, whether the object type is correct or not. The second level verifies the degree of 
fitness of the fuzziness with the factual situation. Normally, field survey should be done 
to verify both accuracies of fuzzy spatial objects.  
 

6.3 Method for generating fuzzy land cover objects 

6.3.1 Fuzziness in land cover objects 

The importance of land cover needs no more explanation, since it plays a fundamental 
role in many fields such as land use planning, urban construction, and natural resource 
exploitation. We address the method for forming fuzzy land covers from TM images.   
 
On TM images the pixel value is the reflectance of all spatial features per pixel. One 
pixel may contain different features. Therefore, the fuzziness of a land cover object is 
raised by both thematic and spatial resolution. Since the fuzziness in object definition 
and object extent cannot be differentiated from the value itself, the result of 
classification contains fuzziness in both thematic and spatial aspects of land cover 
objects.  
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6.3.2 Method for forming fuzzy land cover objects 

Following the general procedure discussed in Section 6.2, a method for forming fuzzy 
land cover objects from TM images is proposed. The procedure is illustrated in Figure 
6.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 Procedure for forming fuzzy land cover objects from TM images  
 
The method consists of seven steps: analyzing fuzziness in land covers, selecting 
appropriate initial membership functions, computing parameters of membership 
functions, fuzzy convolution for adjusting the membership values according to the land 
cover texture, rule-based processing for finalizing membership values, representing 
fuzzy land cover objects, and testing accuracy. 
 

6.4 Test area 
Sanya city is selected for testing the proposed method. The city is located on Hainan 
Island, in the south of China. The TM image was obtained on 18 April 1990. The study 
area ranges from E108.97257° N18.160917° to E109.550161° N18.5904583°, covering 
the city and rural areas, with 1960*2350 pixels on the TM image (Figure 6.4). The 
image in Figure 6.4 shows about 220*200 pixels. 
 
Eleven land cover types will be classified from the 7-band TM image: forest, bush, 
shrub and grassland, waste land, bare land, water body, beach, built-up area, rural 
area, paddy field, dry land. The definition of these land cover types is as follows: 
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(1) Forest: in a pixel most trees are greater than 6 m, with the canopy generally 

covering over 80% of the pixel;  
(2) Bush: in a pixel most trees are between 2 and 6 m, with the canopy generally 

covering over 50% to 80% of the pixel; 
(3) Shrub and grassland: in a pixel there are some trees normally less than 2 m, 

with the canopy generally covering between 50 and 80% of the pixel; 
(4) Waste land: in a pixel there are some trees less than 1 m, with the canopy 

generally covering between 10 and 50% of the pixel; 
(5) Bare land: the canopy covers less than 10% of the pixel;  
(6) Water body: a pixel covered by water; 
(7) Beach: a pixel covered by wet sands and some water; 
(8) Paddy field: a pixel covered by paddy fields; 
(9) Dry land: a pixel covered by dry land; 
(10) Built-up area: most of the pixel covered by buildings, roads or other 

construction material; 
(11) Rural area: a pixel generally covered by building, with some trees, dry land, 

paddy fields or other land cover types.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 Location and TM image of test area 
 
 

6.5 Generating fuzzy land cover objects 

6.5.1 Selecting membership function 

Several methods are available for deriving membership functions, such as the C-means 
clustering approach (Bezdek et al. 1984, Chi and Yan 1995), adaptive vector 
quantization (Dickerson and Kosko 1993), the self-organizing map approach (Chi et al. 
1995), the fuzzy supervised classification approach (Wang 1990, Mannan et al 1998), 
and neural network approach (Sun and Jang 1993). The first three are clustering 
methods that generate the cluster center and variance. They are useful when the center 
should be calculated from all the data. The fuzzy supervised classification approach is 
mainly used to derive crisp classes. In this application, the conventional supervised 
classification is selected, since we assume that the membership function of each fuzzy 
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land cover type basically follows the Gaussian distribution. It should be pointed out that 
neural networks (Gopal et al. 1999) and other classification approaches are also 
applicable.  
 

6.5.2 Deriving initial membership values 

The conventional maximum likelihood classifier is selected to calculate the initial 
membership values. The process includes data sampling, computing parameters for each 
membership function and calculating the membership values for each land cover type. 
 
The maximum likelihood is a classic probability-based classifier and can be found in 
many remote sensing textbooks (Richards 2000). We adopt the following formula to 
calculate the weighted distance of pixel values belonging to a certain land cover type: 
 

)())(()(5.0|))(ln(|5.0)ln( 1
c

T
ccc MXcCovMXcCovaD −−−−= −     (1) 

where: 
Dc is the weighted distance (the distance of a pixel belonging to class c)  
c = a particular class 
X = the measurement vector of the candidate pixel 
Mc = the mean vector of the sample of class c 
ac = percent possibility that any candidate pixel is a member of class c, (defaults 
to 1.0, or is entered from a priori knowledge) 
Cov(c) = the covariance matrix of the pixels in the sample of class c 
|Cov(c) |= determinant of Cov (c) 
Cov(c) -1= inverse of Cov c 
T = transposition function 

 
The membership value of a pixel belonging to class c can be calculated by the following 
formula: 
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where 
    mkeMV ki DD

i ,...,2,1,)min( == −                         (3) 
and m is the number of land cover types.                
 
To compute the parameters, every land cover type is trained by supervised sampling. 
The maximum likelihood classifier classifies the land cover types when the pixel values 
of each type follow a Gaussian distribution. In some cases, a certain class has to be 
sampled by sub-classes such that each of them follows the Gaussian distribution. After 
classification, they can be merged together.  
 
In the Sanya application, the paddy fields are split into two sub-classes, paddy field with 
water and paddy field with a lot of canopy of rice leaves, since there is a big difference 
between the pixel values of these sub-classes. Therefore in the classification, initially 12 
types are sampled and classified.   
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The maximum likelihood classification adopts sample data to calculate the parameters 
of the membership function. It is well known that the sample data tremendously affect 
the classification results. Although several sampling methods are used to check the 
correctness of the classification, it should be pointed out that the final result is obtained 
by sampling data in small polygons conventionally. The classification is done using 
ERDAS Imagine.  
 
In classification, the prior possibilities of all land cover types are assigned to value 1. 
We assume that each pixel may contain a maximum of four different land cover types. 
There are four layers of membership values for each pixel. The largest membership 
values are stored in the first layer, which shows the maximal membership value 
belonging to a class. The second layer stores the second largest membership values. The 
first layer of the classification result is partly shown in Figure 6.5. It also represents the 
crisp result of classification.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 The class at the first layer after classification 
 
 

6.5.3 Fuzzy convolution 

After the classification, the weighted distances of each pixel belonging to every class 
are calculated. After checking the results, several errors can be observed. For example, 
some dry land has been classified as rural land; some land cover objects are too small. 
This is because the maximum likelihood classifier classifies images pixel by pixel. In 
order to derive a better result, the fuzzy convolution is applied to adjust the weighted 
distances of the pixel belonging to all classes, because it considers the membership 
values of neighboring pixels.   
 
The basic formula of fuzzy convolution is: 
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where: 
T(c) = the distance after fuzzy convolution to class c 
wij = the weight of pixel (i,j) 
c = a particular land cover class 
m= number of land cover classes 
Dijl(c) = the weighted distance of pixel (i,j) belonging to class c at layer l. 
x,y = the number of neighborhood pixels    

 
After the fuzzy convolution, the membership value of a pixel belonging to class c can be 
revised from formula (3) to the following: 
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In practice, a 3*3 matrix is adopted to adjust the membership values of land cover types. 
The matrix is:  

















5.0646.05.0
646.0000.1646.0

5.0646.05.0
 

 
The sum of weight ∑∑
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11
 = 5.584. The results of the fuzzy convolution are shown in 

Figure 6.6. After fuzzy convolution, the membership values are more continuous for the 
same class. In the Sanya application, the class “rice with a good canopy” and the class 
“rice with a normal canopy” are then merged together. The class “paddy field” is 
derived simply by adding the two membership values belonging to the two sub-classes 
for each pixel.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 The first layer after fuzzy convolution 
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6.5.4 Additional adjustment of membership values  

After these steps, fuzzy land cover objects are draft generated as shown in Figure 6.6. 
However, the above result is still not accurate enough. Figure 6.7 shows the extent of 
bush. In Figure 6.7 there are some pixels (marked in pink) where the membership values 
for bush cannot reflect the real situations. In general three problems can be detected:  

(1) On some pixels the membership values for bush are very small. These pixels 
definitely belong to other classes, for example, to forest.  

(2) There are also some pixels whose membership values for bush are very large 
but less than 1. These pixels actually must belong to bush.  

(3) Some pixels definitely belong to a single class; however, the membership 
values for that class are far less than 1. For example, a pixel that must be dry 
land may just have a not very large membership value for grassland. However, 
the membership value is only 0.6 for dry land. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7 Spatial extent of land cover objects bush 
 
The first two problems are caused by the maximum likelihood classifier. When this 
method is adopted, it is actually assumed that the membership function of a fuzzy land 
cover follows the Gaussian distribution absolutely and can be calculated by the trained 
data. In the general situation, this assumption is correct since most pixels follow the 
Gaussian distribution. However, this does not hold in extreme situations. Take a simple 
example. There is a pixel whose pixel value is 255 in each band; then the membership 
values for all land covers will be 10% when 10 classes are classified (Figure 6.8). 
However, it does not mean the membership values are 10% in practice, which explains 
why we assume that the membership values follow the Gaussian distribution just 
basically. The large and small values should be refined. 
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Figure 6.8 The pixel value (255) has the possibilities of 10% for all types 
 
In order to solve the first two problems, we define thresholds to cut off small 
membership values and enlarge the big membership values according to the variance of 
the distribution. In the Gaussian distribution, if the membership value for a certain class 
is equal to 1, then the pixel covers all characteristics of that class. If the membership 
value of a pixel for a class is greater than 0.84, then the pixel falls within the interval of 
1.5 variance (1.5σ) (Figure 6.9). We can cut off the two tails according to Figure 6.9. 
That is, if the membership value is not greater than 0.16, then it is set to 0. It means that, 
after classification, if the pixel covers only  characteristics of a certain class to the 
extent 16%, then the membership value is changed to 0. On the other hand, if a pixel 
covers the characteristics to the extent 84% (=100%-16%), then the membership value 
is assigned to 1, showing that it definitely belongs to that class. 
  
   
 
 
 
 
 
 
 

Figure 6.9 Possibility distribution of a fuzzy land cover object 
 
Part of the result after the adjustment is shown in Figure 6.10.  
 
The membership values between 0.16 and 0.84 are then normalized by a linear 
transformation: 
 

68.0/16.068.0/' −= cc MVMV                       (6) 
 
where MVc is the original membership value and MV’c is the new membership value. 
Parameters 1/0.68 and - 0.16/0.68 are calculated according to the assumptions: if MV = 
0.84, then MV’ = 1, and if MV = 0.16 then MV’ = 0.    
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Figure 6.10 Cutting off and enlarging the membership values 
 
 

6.5.5 Rule-based processing 

In order to solve the third problem, more consideration should be given to definitions of 
land cover types. The membership values calculated from the above procedures are 
derived from the pixel value, where a Gaussian distribution is assumed for each class. 
However, when a certain land cover type is clearly defined, then there is no fuzziness in 
this class. Therefore, the fuzziness of a pixel belonging to this class is only caused by 
the spatial resolution. For example, a pixel has a membership value for dry land and a 
membership value for grassland. If the dry land is clearly defined, then the fuzziness is 
caused by the pixel size. That is, in one pixel, there is part dry land and part grassland. 
The maximum likelihood classifier actually calculates the membership values of a pixel 
for different classes.  
 
In reality, some crops grow on dry land, which causes the pixel values to be similar 
between dry land and grassland or waste land. If we take the value of dry land and the 
value of grassland (for example) as the membership values (this means the pixel is 
composed of dry land and grassland), then a lot of errors can be detected through the 
comparison with the reality, since many of these pixels are actually either dry land or 
grassland. Because of the similarity of the pixel values between grassland and dry land, 
even if 300 clusters are classified by an unsupervised clustering, these two classes can 
still not be differentiated. Therefore, it is better to neglect the mixed pixels composed of 
grassland and dry land, since the dry land usually covers larger areas and in reality it 
seldom mixes with grassland. According to this assumption, it is reasonable to enlarge 
the dominant membership values. This strategy is useful when a lot of pixels that 
actually belong to one class have the values of two classes and it is difficult to 
differentiate between the membership values.   
       
In practice, we assume that the definition of dry land and paddy fields are crisp, and 
neglect the mixed pixels between these two classes and other classes. Two rules can 
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then be stated: 
(1) If a pixel has membership values belonging to dry land and grassland, then it 

belongs to the class whose membership value is the maximum of the 
membership values, and the membership values are added up;   

(2) If a pixel has membership values belonging to paddy field and beach, then it 
belongs to the class whose membership value is the maximum of the 
membership values, and the membership values are added up. 

 
The final results are shown in Figure 6.11 and Figure 6.12. 
 

6.5.6 Representing fuzzy land cover objects 

After the above procedures, the fuzzy land cover objects are formed. The next step is to 
determine the boundary and the core of each object. The simplest way is to take the 
pixels whose membership values are greater than 0 as the extent of that type, and take 
the area of whose membership values are equal to 1 as the core and its boundary, since 
the core is an open set that does not contain its boundary. The difference between the 
core and the extent forms the boundary. The fuzzy land cover objects can be visualized 
in the following two ways.  
 
Represent the land cover objects by different classes in different layers. On each layer, 
the change of colors represents the membership values. Figure 6.11 shows the 
membership values belonging to grassland. By this method, the distribution of any class 
can be visualized clearly, however, the overall classes on a pixel cannot be shown in one 
layer. This is useful for visualizing the distribution of a single class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.11 Representation of fuzzy land cover object grassland  
 
Show the dominant classes in the first layer, using brightness to represent the 
membership values for that class (Figure 6.12). The second layer shows the second class 
that the pixel belongs to, also using the brightness to represent the membership values 
for that class. When there is no second class on the second layer (in the case of crisp 
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objects), then the pixel will contain no data. The third layer can be done in the same way. 
In fact the layer is an extension of the visualization used in showing a crisp 
classification result, with the difference being that the membership value is shown on 
each pixel. The method is better for understanding the overall situation of spatial objects. 
However, the secondary classes cannot be shown in the same layer.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12 Representation of dominant land cover objects 
 

6.6 Evaluation of accuracy 
Compared with the methods for evaluating the accuracy of crisp objects, the theory of 
accuracy testing of fuzzy objects is still not mature. We evaluate the accuracy of fuzzy 
land covers by using air-photos, which are also verified by fieldwork. One hundred and 
sixty-two (162) sample points were selected from the area that is difficult to classify. 
The truth value of fuzzy land cover objects is estimated based on expert knowledge. At 
each point, membership values belonging to two land cover classes are simulated. Table 
6.1 shows the accuracy results. 
 
Several comparisons have been made based on test data. In Table 6.1, the first row 
compares results between membership values of the dominant class of the classification 
result with expert estimation at each point. One hundred and forty-three (143) points are 
classified correctly, i.e., 88.2% of 162 points. This also represents the accuracy of the 
crisp classification. The average of the differences is 10 between the membership values, 
which is calculated based on the following formula: 
 

∑ −= nMVMV TcMVC
/||

111
ε  

where n = 143.  
 
It denotes that, if the pixel is correctly classified at the first layer, then the accuracy of 
the membership value is 90%.  
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Table 6.1 Evaluation of accuracy of fuzzy land cover objects 
 Num

ber 
Percentage Average of 

difference 
between 

membership 
values 

Standard 
deviation 
between 

membership 
values 

C1 = T1 143 
 

88.2% 10 14 

C1 = T2 3 
 

1.8% 77 6 
 

C2 = T1 1 0.6% 64 0 
C2 = T2 121 74.7% 2 6 

C1=T1 or C2=T1 144 88.8% 10 14 
C1=T2 or C2=T2 124 76.5% 2 6 

C1=T1 or C1=T2 147 90.7% 11 14 
C2=T1 or C2=T2 122 75.3% 3 6 
C1=T1 or C2=T1 or 
C1=T2 or C2=T2 

160 98.8%  

C1=T1 and C2=T2 108 66.7%  
T1=Cover type 1 from air-photo (ground truth), C1= Cover type 1 from TM image, 
T2=Cover type 2 from air-photo (ground truth), C2=Cover type 2 from TM image 

 
The second row shows the comparison between the dominant class after classification 
and the secondary class of the ground truth. It means that the dominant class should be 
the secondary class of the true value. The average of the differences is 77 between two 
membership values.  
 
The third row shows the comparison between the secondary class and the dominant 
class of the true value. It means that the secondary class should be the dominant class of 
the ground truth. The average of the differences is 64 between two membership values.  
 
The fourth row gives the comparison between the secondary class and the true values. It 
shows that 121 points are correctly classified in the secondary layer, i.e., 74.7%.  The 
mean difference is 2, which denotes that the accuracy of membership values is 98% in 
the correct classes.   
 
The fifth row shows the comparison between the classes in both the dominant and 
secondary layer and the dominant class of the true value. It means that, if any classified 
land cover type is equal to the true class, then the pixel is correctly represented. This 
comparison will add to the number of the pixels that are correctly classified, but enlarge 
the average difference in membership values.    
 
Rows six to eight have a meaning similar to that of the fifth row. The ninth row shows 
the percentage that any one of the classes being equal to any of the true classes.  
 
The tenth row denotes the percentage when both the dominant class and the secondary 
class are correctly classified. It indicates the accuracy of classification in both the 
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dominant and secondary layers. The total overall accuracy is 66.7%.   
 
From the above statistics, it can be seen that if the land cover class is correctly classified, 
then the differences are very small between classified results and the true classes. That 
is, the classification accuracy is the key that affects the accuracy of membership values 
of each land cover object.  
 

6.7 Conclusions and discussions 

6.7.1 Conclusions 

This chapter discusses a general procedure for forming fuzzy spatial objects. Three 
steps are involved in this procedure. Based on this procedure, a method is provided to 
form fuzzy land cover objects. The procedures are further explained by classifying a 
TM image into fuzzy land cover types. While this chapter focuses on the method and its 
procedures, it also proposes some ways of representing fuzzy spatial objects, and 
discusses some aspects of evaluating the accuracy for fuzzy spatial objects.   
 
In this chapter a composite method is proposed for form fuzzy land cover objects. Seven 
steps are involved: designing the initial membership functions for land cover types, 
generating initial parameters by supervised classification, membership value adjustment 
by fuzzy convolution and membership distribution, determining membership values by 
rule-based processing, representing of fuzzy land cover objects, and evaluating the 
accuracy of these objects. It can be seen that the key issue is how to derive the 
membership values of fuzzy land cover objects. According to the results of the test area 
and the accuracy evaluation, it is shown that the proposed method is suitable for 
forming fuzzy land cover objects.  
 

6.7.2 Discussions 

The chapter proposes a method of forming fuzzy land cover objects. The method can be 
revised in several aspects. 

(1) The limitation on minimum membership values can be put at the classification 
stage. That is, small membership values can be filtered out through setting 
some confidence value before classification. 

(2) Different weighted values can be adopted in the fuzzy convolution for 
different applications.  

(3) The fuzzy convolution can also be done after filtering out the small 
membership values.  

(4) The fuzzy spatial objects are formed by using fuzzy set theory; they can also 
be tuned by using a neural network approach.  

 
Less consideration is paid to different classification methods. Actually, many 
classification methods are available, such as the knowledge-based classifier and neural 
network classification, which can also generate the membership values for fuzzy spatial 
objects. It is necessary to discuss them to compare the accuracy of land cover classes 
and membership values.  
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The accuracy of different land cover types is not presented in the chapter. Actually, how 
to investigate the accuracy of the fuzzy objects, and how to represent fuzzy spatial 
objects are two research aspects in modeling fuzzy spatial objects. Although some 
efforts have been made, more overall and systematical research is still needed.  
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Chapter Seven 

Querying Fuzzy Spatial Objects  

 
 
 
 

7.1 Introduction 
An important difference between spatial data and conventional data lies in the spatial 
coherence between spatial data. The spatial coherence can be reflected in many aspects 
such as length, area, distance and angle. Topological relations between spatial data are 
one of these fundamental characteristics. Querying spatial objects through different 
topological relations is one of the basic tasks of GIS. In order to support fuzzy spatial 
objects in GIS, besides theoretic research on definitions of fuzzy spatial types, 
topological relations and the practical generation of fuzzy spatial objects, we should be 
able to query fuzzy objects in different ways, and especially query fuzzy spatial objects 
based on different kinds of topological relations.  
 
In Chapters 4 and 5, the topological relations were formalized between simple fuzzy 
regions, simple fuzzy lines and fuzzy points. For example, between two simple fuzzy 
regions there are 44 topological relations when the empty/non-empty topological 
invariants are adopted. One hundred and fifty-two (152) topological relations between 
two simple fuzzy regions can be identified if the 4*4-intersection matrix is adopted.  
 
In practice, it is necessary to query fuzzy spatial objects according to the topological 
relations between them. Since the topological relations between fuzzy spatial objects are 
all identified, the simplest method is to generate each operator according to these 
topological relations between two fuzzy objects. For example, we can define 44 or 152 
query operators for the topological query.  
 
However, as this will produce a large number of topological operators, the query will 
not be practical. In conventional GIS, a common method for querying spatial objects 
through topological relations is to summarize these topological relations in such a way 
that the query is easily understandable, yet it can meet most requirements of general 
applications.  
 
Schneider (2001) proposed a method for querying fuzzy objects based on a set of crisp 
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topological relations that are defined between two crisp objects created by α-cut from 
fuzzy objects, and whose membership values are derived from the membership values 
of fuzzy objects. In his method, the membership values are derived from each pair of 
different α-level crisp objects. This method is able to query fuzzy spatial objects. 
Strictly speaking, this query is not fuzzy topological (refer to Section 7.3.1). It is also 
difficult to query spatial objects with a specified relation with other objects. For 
example, it is very difficult to query spatial objects that have relation (6) in Appendix 1 
with another fuzzy region.   
 
In order to query fuzzy objects based on different topological relations, different 
methods are necessary. In this Chapter four methods are proposed for querying spatial 
objects. The operations address the querying of fuzzy regions, which can easily be 
extended to the querying of fuzzy lines and points. A combinatorial method and a fuzzy 
method are proposed based on the qualitative topological relations. The Schneider 
method is updated into a so-called crisp-relation-set-based fuzzy query and furthermore, 
the fuzzy-relation-set-based fuzzy query method is proposed for retrieving fuzzy objects. 
The four query methods provide relatively complete solutions to retrieving fuzzy 
objects for GIS applications. 
 
The chapter is structured in the following way. Section 7.2 reviews some topological 
properties of fuzzy regions. Section 7.3 introduces some notions related to topological 
relations, including qualitative fuzzy topological relations and topological relation sets. 
Section 7.4 designs six operators from conventional GIS applications. Section 7.5 
intensively discusses four query methods for retrieving fuzzy regions based on 
qualitative relations as well as on topological relation sets. Section 7.6 is the design of 
query interfaces and the query implementation. Section 7.7 analyzes the similarities and 
differences of different query methods. Conclusions and discussions are summarized at 
the end.  
 

7.2 Topological properties of a fuzzy region 
In Chapter 5 a fuzzy region was formally defined. It is quoted here for the next 
discussion. A fuzzy region is a fuzzy complex composed of fuzzy 2-cells of finite fuzzy 
complex such that the union of its cells meets the following conditions in 2~R : 

(1) It is a non-empty proper double-connected closed set;  
(2) The interior is a double-connected regular open set;  
(3) The support is equal to the support of the closure of the interior; 
(4) The core, the internal boundary and the outer are respectively a collection of 

subsets such that these subsets are mutually disjoint and every subset is 
double-connected. 

 
 
 
 
 
 

Figure 7.1 Two fuzzy objects bush 
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Figure 7.1 illustrates two fuzzy regions (bush) that are generated in Chapter 6.  
 
Some of topological properties of a fuzzy region have been explained in the previous 
chapters. The properties that will be used in this chapter are summarized as follows (Let 
A be a fuzzy region in 2~R .): 

(1) The core ⊕A : the core is the interior of the crisp subset of fuzzy region A in 
2~R . It is similar to the interior of a crisp region in 2R ; 

(2) The boundary of the core )( ⊕∂ A : it is the boundary of core of A. It is similar 
to the boundary of a crisp region in 2R ;   

(3) The boundary A∂ : it is the difference between A and the core of A;  
(4) The frontier Ae∂ : it is the subset of a fuzzy region A for which the closure of 

the interior of A is greater than the interior of A;   
(5) The internal boundary Ai∂ : it is equal to the interior of the boundary of A 

(refer Proposition 4.24(3));   
(6) The external frontier Aex∂ : it is the subset of A for which the fuzzy region is 

greater than the union of the closure of the core of A and the interior of A;  
(7) Crisp region )(supp A : it is the support of A;  
(8) α-level region αA :  it is a crisp set of A whose memberships are greater than 

and equal to α;  
(9) Fuzzy α-level region α~A : it is a fuzzy set of A whose membership values are 

the same as the fuzzy region if these values are equal to or greater than α, 
otherwise 0. We call it fuzzy α-level region (refer to fuzzy α-level set in 
Section 2.3.4).  

 
The crisp region, the α-level region, and the fuzzy α-level region are topological 
properties in 2~R , since they are all closed in 2~R . These properties are illustrated in 
Figure 7.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2 Topological properties of a fuzzy region 
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7.3 Qualitative topological relation and topological relation 
set 

7.3.1 Qualitative topological relation 

A qualitative (fuzzy topological) relation is the relation that is fuzzy topological and the 
membership value of the relation is 1. According to this definition, between two simple 
regions, the 44 topological relations that are identified based on the 3*3-intersection 
matrix, and the 152 topological relations that are identified based on the 
4*4-intersection matrix by using empty/non-empty topological invariants are qualitative 
relations, since the result is a collection of empty and non-empty values. The 77 
topological relations between two real simple fuzzy regions are also qualitative 
relations.  
 

7.3.2 Topological relation set 

We define a notion topological relation set. The first type of topological relation set is 
defined based on crisp relations between two fuzzy objects. As we know, the crisp 
relations hold between two α-level (crisp) objects. Let ),~( δX  be an fts of X, define a 

mapping XXF →
~:  from fts ),~( δX  to cts ])[,( δX  such that 

}00;0,:{ ==>== αα ifxifxxxF a . Then for every subset XA ~
⊆ , we get a set of 

α-level crisp sets }0:{ >ααA of A in cts ])[,( δX . Let A, B be two fuzzy regions in 

),~( δX . Through this mapping, we will get two collections of crisp regions αA  and 

αB . Between each pair ( αA , αB ) there is a crisp topological relation. The collection of 
crisp topological relations between all pairs }0:),{( >ααα BA  of each level is called a 
crisp topological relation set. Note F is not a fuzzy homeomorphic mapping. Therefore, 
the collection of topological relations between these crisp regions is not a fuzzy 
topological relation between two fuzzy regions in the fuzzy topological space. We just 
assume that the fuzzy topological relation r between two fuzzy regions A and B is 
depicted by a set of crisp topological relations crr  between two α-level regions αA  
and αB  of A and B: }0:),({),( >= ααα BArBAr cr . This definition is slightly different 
from Schneider’s method. He proposed that the crisp topological relations include every 
relation between crisp regions αA  and βB ])1,0[,( ∈βα . In our definition, the crisp 
topological relations are derived between αA  and αB , where each pair of αA  and 

αB  is at the same level.   
 
The second type of the topological relation set is defined based on a set of qualitative 
relations between two fuzzy regions. In the fts, we can derive a collection of fuzzy 
α-level (sub-)regions, i.e., a fuzzy set A is the union of fuzzy subsets: 

}10:{ ~ ≤≤= ααAA . Between two fuzzy (sub-)regions },{ ~~ αα BA , one of the qualitative 
relations holds when the 3*3- or 4*4-intersection matrix is applied. The collection of 
these qualitative relations consists of fuzzy topological relations. Note that every 
qualitative relation is fuzzy topological; the collection of qualitative relations between 
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two fuzzy (sub-)regions can really represent the fuzzy topological relation between two 
fuzzy regions. We call this set fuzzy topological relation set.  
 
The crisp topological relation set and the fuzzy topological relation set are illustrated in 
Figure 7.3. An α-level region αA  of fuzzy region A is marked in grey. An α-level 
region αB  is marked in green. α~A  is a fuzzy α-level region of A. α~B  is a fuzzy 
α-level region of B. The crisp topological relation set is the collection of crisp 
topological relations between αA  and αB  of every level. The fuzzy topological 
relation set is the collection of fuzzy qualitative topological relations between α~A  and 

α~B  of every level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3 Topological relation set 
 
 
We will demonstrate the methods for querying fuzzy regions based on qualitative 
relations as well as two kinds of topological relation sets. The discussion on querying 
fuzzy lines is omitted, since the query operations are similar. Two kinds of query 
methods are proposed: query based on qualitative relations and query based on two 
types of relation sets.   
 
 

7.4 Query operators 

7.4.1 Design of query operators 

The 152 or 44 relations between two simple fuzzy regions are all qualitative. These 
relations can also be identified between two fuzzy regions. Generating every operator 
for each relation is not practical because there are too many query operators. It is 
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necessary to design appropriate query operators so that fuzzy spatial objects can be 
retrieved, and the query can be easily understood.   
 
Therefore, the query operators should be defined. The conventional eight topological 
relations {disjoint, contains, inside, covers, coveredby, equal, meet, overlap} form a 
group of the best candidates to be considered as fuzzy query operators since they are 
mathematically defined and have already become the common-sense geography. 
However, they should be adjusted in fuzzy settings. When we look into the eight 
relations, it can be found that the relations cover and contains share the difference as to 
whether both boundaries are intersected or not (the other intersection conditions are the 
same). In the fuzzy situation, since the boundary of a fuzzy object may have the same 
dimension as the object itself, it is impossible to differentiate between these two 
relations according to the boundary-boundary intersection. For example, Figure 7.4 
shows three settings between two simple fuzzy regions. Is it possible to tell the 
difference between setting A, B and C?  
 
 
 
 
 
 

Figure 7.4 Three qualitative relations between two simple fuzzy regions 
 
The 3*3-intersection matrices are expressed by
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If we look at the first two rows and the first two columns, the setting B is relation 
contains but A and C are covers in terms of the 4-intersection matrix in the cts. However, 
most people regard them as the same. To make the query operators easily 
understandable, the contains and covers relations are merged together. For the same 
reason, the relations inside and coveredby are not differentiated. Therefore, we define 
six basic relations: {disjoint, contains, inside, equal, meet, overlap} (in short, basic 
relations) to be query operators.  
 
The definitions of the basic relations are generated according to the intuitional meaning 
of a topological relation. When a relation is mentioned, an intuitional meaning of this 
relation will be reflected in our minds. For example, when we consider the meet relation, 
we will think that the meaning of meet is that the boundaries intersect each other and the 
interiors are disjoint.  
 
We can interpret the intuitional meaning of the basic relations between two fuzzy 
regions A and B as follows:  

(1) Disjoint: A and B are disjoint;  
(2) Meet: The boundaries intersect each other, and the two cores are disjoint;  
(3) Contains: A contains B; 
(4) Overlap: A is not inside B and A does not contain B and vice versa;  
(5) Inside: A is inside B; 
(6) Equal: A is equal to B.  

   

A                 B               C
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These intuitional meanings can be transferred into the formal definitions for these basic 
relations. Mathematically they can be defined by the valuation sets }1,0{ , }0{  and 

}1{ .  }1,0{  means that the value could be either 0 or 1.  
 

(1) A disjoint B: 

















}1{}1,0{}1,0{
}1,0{}0{}0{
}1,0{}0{}0{ ;   

(2) A equal B:    

















}1{}0{}0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ ;  

(3) A contains B: 

















}1{}0{}0{
}1,0{}1,0{}1,0{
}1,0{}1,0{}1,0{ -

















}1{}0{}0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ ;  

(4) A inside B: 

















}1{}1,0{}1,0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ -

















}1{}0{}0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ ;  

(5) A meet B: 

















}1{}1,0{}1,0{
}1,0{}1{}1,0{
}1,0{}1,0{}0{ -

















}1{}0{}0{
}1,0{}1,0{}1,0{
}1,0{}1,0{}1,0{ -

















}1{}1,0{}1,0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ -

















}1{}0{}0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ ;  

(6) A overlap B: 

















}1{}1,0{}1,0{
}1,0{}1,0{}1,0{
}1,0{}1,0{}1,0{  -

















}1{}0{}0{
}1,0{}1,0{}1,0{
}1,0{}1,0{}1,0{ - 

















}1{}1,0{}1,0{
}0{}1,0{}1,0{
}0{}1,0{}1,0{ - 

















}1{}1,0{}1,0{
}1,0{}1{}1,0{
}1,0{}1,0{}0{ - 

















}1{}1,0{}1,0{
}1,0{}0{}0{
}1,0{}0{}0{ . 

 
These definitions partly result from the crisp topological relations between two crisp 
regions. For example, the contains relation between two crisp regions A and B can be 
formalized by 

















100
100
111  in cts. The intersections between cores and boundaries are the 

unique values 








00
11 , and the interior and the boundary of B do not intersect the 

exterior of A. In fuzzy settings, since the boundary of a fuzzy region may be 
two-dimensional, the intersections between boundaries and cores have more variances 
than the unique values in the cts. However, the interior and the boundary of B cannot 
intersect the exterior of A when A contains B. If we consider fuzzy regions A and B as a 
whole, then A contains B can be defined by the fact that the interior and the boundary of 
B do not intersect the exterior of A, and intersections between cores and boundaries are 
either 0 or 1. It is easy to show that each basic relation is a fuzzy topological relation 
since it is preserved under fuzzy homeomorphisms. 
 

7.4.2 Grouping qualitative relations 

Based on these definitions the qualitative relations can be grouped into the basic 
relations. The concept of grouping topological relations in crisp situation was formally 
proposed by Clementini et al (1993). We group the 44 relations between two simple 
fuzzy regions into the basic relations. These relations can also be detected between two 
fuzzy regions.   
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Appendix 1 lists these 44 qualitative relations between two simple fuzzy regions. Tables 
7.1 to 7.6 show the result of grouping these qualitative relations in the six basic 
relations.    
 
(1) A disjoint B: Only relation (1) of the 44 qualitative relations is detected to belong to 
this class based on the definition of the basic relation.  
 
Table 7.1 A disjoint B 
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(2) A contains B: Ten relations belong to this class. 
 
Table 7.2 A contains B 
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(3) A inside B: Ten relations are also detected. 
 
Table 7.3 A inside B 

















111
010
010

)5(
 

















111
011
010

)11(
 

















110
011
010

)16(
 

















111
011
011

)20(
 

















110
011
011

)24(
 

















111
011
001

)27(
 

















110
011
001

)30(
 

















110
010
011

)37(
 

















111
001
001

)39(
 

















110
010
001

)42(
 

 
 
 

     

     

 



Querying fuzzy spatial objects 

 147 

(4) A meet B: There are nine relations. 
 
Table 7.4 A meet B 
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(5) A equal B: There are five relations. 
 
Table 7.5 A equal B 
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(6) A overlap B: There are nine relations. 
 
Table 7.6 A overlap B 
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7.5 Methods for querying fuzzy regions 

7.5.1 Combinatorial query method 

If the six basic relations are adopted as query operators to query fuzzy spatial objects, 
the fuzzy spatial objects that have a basic relation with others will be retrieved. For 
example, if the operator is overlap, a query “retrieve the fuzzy regions that overlap with 
fuzzy region A” will get all the fuzzy regions that have the topological relation overlap 
with A, which includes relations (18), (19), (21), (23), (28), (29), (34), (35) and (44) 
listed in Table 7.6. There is no possibility of retrieving fuzzy regions based on a 
specified relation, for instance (18).  
 

7.5.1.1 Absolute sub-relation 

In order to be able to retrieve a fuzzy region based on a specified qualitative relation, we 
introduce the notion (absolute) sub-relation. As we know, the boundary and the core of 
a (simple) fuzzy region are two-dimensional if it is not a crisp region; and the fuzzy 
region itself is also two-dimensional. They are all topological invariants. We can derive 
the basic relations between two invariants of two fuzzy regions. Let A be a fuzzy region. 
There are three two-dimensional topological invariants: A itself, the core of A, and the 
boundary of A. For two fuzzy regions A and B, there are nine pairs between these 
components: A and B, A and ⊕B , A and B∂ , A∂  and B, A∂  and B∂ , A∂  and ⊕B , 

A∂  and ⊕B , ⊕A  and B∂ , and ⊕A  and B∂ .  
 
Between fuzzy regions A and B, if we adopt the external frontier Aex∂  of A, the union 
( −⊕∪∂ AAi ) of the interior of the boundary and the closure of the core of A, the 
external frontier Bex∂  of B, the union ( −⊕∪∂ BBi ) of the interior of the boundary and 
the closure of the core of B to form a 2*2-intersection matrix, then the eight relations 
{disjoint, contains, inside, cover, coveredby, equal, meet, overlap} can be identified. 
These can be grouped into six basic relations: {disjoint, contains, inside, equal, meet, 
overlap}. 
 
If we adopt the frontiers ( Ae∂ , Be∂ ) and the interior of the boundary ( Ai∂ , )Bi∂  for 

A∂  and B∂ , then the same basic relations can be identified between A and B∂ , A∂  
and B, A∂  and B∂ .  
  
Between A and ⊕B , seven relations can be identified except relation meet: {disjoint, 
contains, inside, cover, coveredby, equal, overlap}. These can be grouped into five basic 
relations: {disjoint, contains, inside, equal, meet, overlap}. The same basic relations 
exist between A∂  and ⊕B , A∂  and ⊕B , ⊕A  and B∂ , ⊕A  and B∂ .  
 
A basic relation between these components of fuzzy region A and fuzzy region B is 
called a (absolute) sub-relation between A and B.  
 
By using a certain combination of these sub-relations, the 44 or 152 relations between 
two simple fuzzy regions can be achieved. This method is called the combinatorial 
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query method.  
 

7.5.1.2 Query based on qualitative relations 

When we apply a query based on the 44 relations, the combination of four sub-relations 
is enough: ⊕A  and B,  ⊕A  and  ⊕B , A and ⊕B , and A and B. For example, if we 
want to query fuzzy regions based on relation (22) 

















100
111
111  of the 44 relations (all 44 

relations are listed in Tables 7.1 to 7.6 of Section 7.4), it can be detected by three 
sub-relations: A contains B, ⊕A  overlap B, and ⊕A  overlap ⊕B  (Figure 7.5).  
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5 Three sub-relations of topological relation (22)  
between fuzzy simple regions A and B 

 
To identify 152 relations, four more relations should be added: ⊕A  and B∂ , A∂  and   

⊕B , and A∂  and B∂ .  
 
The 152 or 44 relations between two simple fuzzy regions can be achieved by the above 
combinations of basic relations between the components. Between two fuzzy regions, 
more topological relations can be derived, yet these relations can be grouped into 152 or 
44 relations. And they can be achieved by the above combinatorial method.  
 
It is also possible to query other qualitative topological relations between two fuzzy 
regions, for example, the qualitative relation that is defined between a fuzzy α-level 
region A of a simple fuzzy region and another fuzzy region B. The qualitative relations 
between A and B can be formalized by the 3*3-intersection matrix or the 
4*4-intersection matrix. For example, we can make the forest area whose membership 
values are greater than and equal to 0.2 a fuzzy 0.2-level region, and apply the 
3*3-intersection or 4*4-intersection matrix to detect if this region has a kind of relation 
with another region. 
 
In order to query fuzzy regions based on membership value comparisons within a 
qualitative topological relation, four operations can be generated: ⊇, ⊆, ≠, = as defined 
in Section 4.5.4. For example, we can ask whether the membership degrees of a fuzzy 
region are greater than those of another fuzzy region when they are overlapped spatially.  
 

 

 

A contains B ⊕A overlap B ⊕A  overlap ⊕B  



Chapter seven 
 

 150 

 

7.5.2 Qualitatively-based fuzzy query method 

The above approach retrieves fuzzy regions directly based on the qualitative relations, 
which are accomplished through the combinations of sub-relations between the 
topological properties of fuzzy regions. The query operation is crisply implemented 
such that each sub-relation is crisply valued and the combination of these sub-relations 
is just a crisply valued set. This approach is useful for querying fuzzy objects based on 
the exact qualitative relations. However, since there are 44 and 152 relations, we might 
not know which relations we are really concerned with; on the other hand, we might get 
confused when we want to retrieve some fuzzy objects according to some combinations 
of sub-relations, since there are many combinations. Sometimes it is not very practical 
since this approach requires some ideas on notions of fuzzy spatial objects.  
 

7.5.2.1 Relative sub-relations 

Another way of querying fuzzy spatial objects is to retrieve them based on a basic 
relation with fuzziness, i.e., a basic relation is a fuzzy relation. Let us investigate an 
example. There are two fuzzy simple regions in Figure 7.6. What is the relationship 
between them? 
 
 
 
 
 

Figure 7.6 Two fuzzy regions 
 
The 3*3-intersection matrix indicates that it is relation (34)

















110
110
111 . If we look at the 

first two rows and two columns








10
11 , it basically belongs to the relation contains in 

terms of crisp topological relations. However, one might regard A overlap B. Apparently 
both opinions are reasonable since it does not equal any 9-intersection matrix in Section 
3.3.1. Although there are 44 or 152 relations between two fuzzy simple regions, these 
44 or 152 relations just express the crisp information, and the fuzziness of the relation is 
not interpreted.  
 
In order to query fuzzy objects according to fuzziness in spatial objects, it is useful to 
introduce another query method. We still adopt the six basic relations as query operators. 
But each operator is considered to be a fuzzy relation with the membership values 
indicating the membership degree or values for the relation. For example, we can take 
the basic relation contains as a fuzzy relation that represents contains and whose 
membership value indicates the degree it belongs to contains. The membership degrees 
of these operators are generated based on qualitative relations between fuzzy regions. 
We design a qualitatively-based fuzzy query method for querying fuzzy regions. Then 
the question is how to assign the membership degrees for these basic relations from 
qualitative relations.  
  

A B 
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A fuzzy approach is adopted to realize these operators. It detects so-called relative 
sub-relations between some components of fuzzy regions; they are then classified into 
the basic relations; and finally the membership degrees are assigned for each relation. 
This query method is called the qualitatively-based fuzzy query method. 
 
As we know, the qualitative relations are formed based on the intersections of their 
topological parts and it is also possible to derive the topological relations (which are 
called sub-relations) to be the basic relations between these parts. We introduce another 
notion: the relative sub-relation. A relative sub-relation is a relation that is identified 
between two two-dimensional topological components of two fuzzy regions, with 
relativity to the regions themselves. A relative sub-relation is formed in the following 
way: the definitions of all these components are unchanged and the relation is formed 
according to the definition of the basic relations. In the previous section, we saw that 
there are three two-dimensional topological parts to a simple fuzzy region A: A itself, 
the core and the boundary of A. Between two fuzzy regions A and B, there are nine 
kinds of relative sub-relations. We can identify the relative sub-relations between these 
parts, for example, the relative sub-relations between ⊕A  and B, and ⊕A  and ⊕B  
for relation (8). Since ⊕A  and B∂  do not intersect, and both boundaries intersect, 

⊕A  and B meet each other (because ⊕A  does not intersect B∂ , and both boundaries 
intersect). ⊕A  and ⊕B  meet also each other (because both cores do not intersect and 
both boundaries intersect) (Figure 7.7). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7 Two relative sub-relations of topological relation (8)  
between fuzzy simple regions A and B 

 
Apparently the relative sub-relation between A and B is a basic relation. In other words, 
we have one kind of basic relation. In order to make a fuzzy query to retrieve fuzzy 
regions based on the 44 qualitative relations, four kinds of relative sub-relations A and B, 

⊕A  and B, ⊕A  and ⊕B , A and ⊕B , are necessary and sufficient. The necessity is 
because some relations need all these relative sub-relations to be differentiated such as 
relations (18), (19), (28) and (29). The sufficiency is because the other relative 
sub-relations are implicitly contained in these relative sub-relations.  
 
In the above way, four relative sub-relations can be grouped into the basic relations, 
respectively. The process of the classification is shown as follows and the results are 

 

 ⊕A  
A∂  

⊕B  
B∂  

 ⊕A
A∂

⊕B
B∂

⊕A  meets B ⊕A meets ⊕B
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summarized in Table 7.7. The relation (1) is omitted since all relative sub-relations are 
disjoint. 
 
Table 7.7 Basic relations for 44 qualitative relations in terms of relative 
sub-relations 
Qualitat

ive 
relation 

No. 

⊕A and 
B  

⊕A  and 
⊕B  

Qualita
tive 

relation 
No. 

A  and 
⊕B   

⊕A  and 
⊕B  

Qualitat
ive 

relation 
No. 

⊕A  and 
⊕B  

(8) Meet Meet (5) Meet Meet (17) Meet 

(13) Overlap Meet (11) Overlap Meet (26) Overlap 
(15) Inside Meet (16) Contains Meet (32) Inside 
(22) Overlap Overlap (20) Overlap Overlap (38) Contains 
(25) Inside Overlap (24) Contains Overlap (41) Equal 
(31) Inside Inside (27) Overlap Inside   
(33) Overlap Contains (30) Contains Inside   
(36) Inside Contains (37) Contains Contains   
(40) Contains Contains (39) Inside Inside   
(43) Inside Equal (42) Contains Equal   

Basic relation between A and B is 
contains;  
Basic relation between A and ⊕B  
is contains. 

Basic relation between A and B is 
inside;  
Basic relation between ⊕A  and B 
is inside. 

Basic relation 
between A and B is 
equal;  
Basic relation 
between A and ⊕B  
is contains; 
Basic relation 
between ⊕A  and B 
is inside. 

Qualitat
ive 

relation 
No. 

A  and 
⊕B  

⊕A and 
B  

Qualita
tive 

relation 
No. 

A  and ⊕B ⊕A and B ⊕A  and 
⊕B  

(2) Meet Meet (18) Overlap Overlap Overlap 
(3) Overlap Meet (19) Overlap Inside Overlap 
(4) Meet Inside (21) Contains Overlap Overlap 
(6) Meet Overlap (23) Contains Contains Overlap 
(7) Contains Meet (28) Overlap Inside Inside 
(9) Overlap Overlap (29) Contains Inside Inside 
(10) Overlap Inside (34) Contains Overlap Contains 
(12) Contains Overlap (35) Contains Inside Contains 
(14) Contains Contains (44) Contains Inside Equal 

Basic relation between A and B is 
meet;  
Basic relation between ⊕A  and 

⊕B  is meet. 

Basic relation between A and B is overlap. 

 
By using this approach, each of the 44 qualitative relations is classified into the four 
types of relative sub-relation.  
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7.5.2.2 Membership values of relations between simple fuzzy regions 

Between two simple fuzzy regions, the membership degrees for each basic relation are 
then assigned as follows. Since in total four relative sub-relations between A, ⊕A , B 
and ⊕B  are adopted, the membership degree of 0.25 can be assigned to each relative 
sub-relation, so that the sum of membership values for each qualitative relation is 1. For 
example, for the qualitative relations (8), (13), (15), (22), (25), (31), (33), (36), (40) and 
(43), the basic relations between A and B, and A and ⊕B  are 0.25. If the basic relations 
of relative sub-relations are the same, the membership degrees can be added together. 
Table 7.8 lists the membership degrees of basic relations for 44 qualitative relations.  
 
Table 7.8 Membership degrees of basic relations for 44 qualitative relations  
Rela
tion 

C I M E O Rela
tion 

C I M E O 

(8) 0.5  0.5   (2)   1   
(13) 0.5  0.25  0.25 (3)   0.75  0.25 
(15) 0.5 0.25 0.25   (4)  0.25 0.75   
(22) 0.5    0.5 (6)   0.75  0.25 
(25) 0.5 0.25   0.25 (7) 0.25  0.75   
(31) 0.5 0.5    (9)   0.5  0.25 
(33) 0.75    0.25 (10)  0.25 0.5  0.25 
(36) 0.75 0.25    (12) 0.25  0.5  0.25 
(40) 1     (14) 0.5  0.5   
(43) 0.5 0.25  0.25  (18)     1 

      (19)  0.25   0.75 
(5)  0.5 0.5   (21) 0.25    0.75 
(11)  0.5 0.25  0.25 (23) 0.5    0.5 
(16) 0.25 0.5 0.25   (28)  0.5   0.5 
(20)  0.5   0.5 (29) 0.25 0.5   0.25 
 (24) 0.25 0.5   0.25 (34) 0.5    0.5 
(27)  0.75   0.25 (35) 0.5 0.25   0.25 
(30) 0.25 0.75    (44) 0.25 0.25  0.25 0.25 
(37) 0.5 0.5    (17) 0.25 0.25 0.25 0.25  
(39)  1    (26) 0.25 0.25  0.25 0.25 
(42) 0.25 0.5  0.25  (32) 0.25 0.5  0.25  

      (38) 0.5 0.25  0.5  
      (41)    1  

C=contains, I=inside, M=meet, E=Equal, O=overlap 
 
From Table 7.8, it can be perceived that for some qualitative relations, membership 
degrees of basic relations are equal. For example, in Relation (14), the membership 
values for contains and meet are 0.5 and some relations (Relation 40, 39, 2, 18, 41) are 
crisp. This matches our intuition. Actually, relations (40), (39), (2), (18) and (41) are 
crisply contains, inside, meet, overlap and equal, respectively. Therefore, this method is 
reasonable. The membership values can also be partly checked by using topological 
distance between two simple regions (Egenhofer and Franzosa 1994).  
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7.5.2.3 Membership values of relation between fuzzy regions 

This method is also applicable to querying fuzzy regions based on the qualitative 
relations. More qualitative relations exist between two fuzzy regions. They can still be 
grouped into the six basic relations since they are crisply defined. The membership 
values of every basic relation can be calculated by the following steps. Suppose region 
A has m ⊕A  and region B has n ⊕B  ( Nnm ∈, ): 
 

(1) Since A and B are unique, we cannot average the membership value for each 
basic relation according to the total number of combinations of relative 
sub-relations between these components. However, since there are four types 
of relative sub-relations between A, ⊕A , B and ⊕B  : ),( BAr , ),( BAr ⊕ , 

),( ⊕BAr , and ),( ⊕⊕ BAr  where r ={disjoint, contains, inside, equal, meet, 
overlap}, we can assign the membership value for each basic relation by 

25.0=rπ , i.e., 25.0),( =BArπ , 25.0),( =⊕ BArπ , 25.0),( =⊕BArπ and 
25.0),( =⊕⊕ BArπ . 

 
(2) Between A and B, since they are unique, the membership value of the basic 

relation between A and B is 0.25. Between ⊕A  and B, there are m relative 
sub-relations. The membership value of each basic relation is calculated by: 

 )1(25.0),( mi
m

BAir ≤≤=⊕π                    (1) 

The membership values will be added up when the basic relations are the same, 
i.e., if  jimjiBArBAr ji ≠≤≤= ⊕⊕ ,,1),,(),( , then the membership value for 

r is  
mmm

BABA jrir

5.025.025.0),(),( =+=+ ⊕⊕ ππ .   

 
(3) The basic relations between A and ⊕B  can be calculated according to (2). 
 
(4) Between ⊕A  and ⊕B , there are maximally nm *  kinds of relative 

sub-relations. If there is a core ⊕
iA  )1( mi ≤≤  that is equal to (or is inside) 

⊕
sB  )1( ns ≤≤ , then ⊕

iA  does not intersect all ⊕
kB  ),,...,2,1( sknk ≠= . We 

will not count all these meet relations. The number of relative sub-relations will 
be reduced from nm *  to 1* +− nnm . Similarly, if there is a core 

⊕
tA mt ≤≤1  that contains ⊕

jB )1( nj ≤≤ ,  then ⊕
jB   meets  all 

⊕
kA ),,...,2,1( jkmk ≠= . We also remove them for the total number of relative 

sub-relations. In general, if there are some cores ⊕
iA  that equal or are inside 

⊕
sB , and ⊕

tA  contains some cores ⊕
jB  ),1( mti ≤≤ ),1( njs ≤≤ , the total 

number will be:  
)),((count*)1()),((count*)1(* ⊕⊕⊕⊕ −−−−= jt

y
si

x BArmBArnnmsum           (2) 
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where )(count ⋅  is used to count the number of relative sub-relations, ),( ⊕⊕
si

x BAr  
is equal or inside, and ),( ⊕⊕

jt
y BAr  is contains. The membership between ⊕

iA  and 

⊕
jB  is then 

sum
BA jir

25.0),( =⊕⊕π . The membership values can also be added up if 

the basic relations are the same.  
 
For example, there are two regions A and B illustrated in Figure 7.8. Then the 
membership value that A contains B is the sum of membership values that A contains B, 
and A contains ⊕B : 0.25+0.25 = 0.5. Since two cores ⊕A  do not intersect B, the meet 
relation membership value is 0.125 + 0.125 = 0.25. Similarly, since two cores ⊕A  do 
not intersect ⊕B , the meet relation membership value is also 0.25. Therefore the total 
membership value that A meet B is 0.25 + 0.25 = 0.5.  
 
 
 
 
 
 

Figure 7.8 Calculations of membership values for relative sub-relations 
 between two fuzzy regions A and B  

 

7.5.3 Crisp-relation-set-based fuzzy query method  

The above two methods are designed to query fuzzy objects based on qualitative 
relations. In Section 7.4 two types of topological relation sets are introduced. We now 
generate the query operations and their membership values based on these two types of 
relation sets.  
 
According to the definition of the crisp relation set, eight topological relations can be 
adopted as the fuzzy relation. We propose the crisp-relation-set-based fuzzy query 
method, in which the operators are derived from eight relations, and membership values 
are calculated based on membership values of two fuzzy regions. Since the relation 
names are imported from the crisp topological relations, it is feasible to calculate the 
membership values based on the crisping properties and membership values of fuzzy 
regions. We adopt the concept of basic probability assignment for calculation 
(Schneider 2001). Let F be a fuzzy region. A basic probability assignment )(

i
Fm α  can 

be associated with each α-level (crisp) region 
i

Fα  and can be interpreted as the 
probability that 

i
Fα  is the “true” representative of fuzzy region F, and is defined as  

1)( +−= iii
Fm ααα                             (3) 

for ni ≤≤1  where Nn∈  with 11 =α  and 01 =+nα . That is, m is built from the 

differences of successive si 'α . It is easy to see that the sum 1)(
1

=∑
=

i
Fm

n

i
α .  

Let ),( BAfπ  be the value that represents a binary property between two fuzzy simple 
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regions A and B. Supposing that each α-level region of A and B is a simple crisp region, 
then this membership value can be determined as the sum of weighted operations by  

∑
=

⋅=
n

i
crf ii

BAmBA
1

),(),( ααππ                       (4) 

where ),(
ji

BAcr ααπ  yields the value of the corresponding property for two crisp 

α-level regions. The value ),(
ji

BAcr ααπ  is either 1 or 0, which is determined by the 

relations between two crisp α-level regions. crcr TBA
ji
∈),( ααπ . crT = {disjoint, contains, 

inside, cover, coveredby, equal, meet, overlap}. For example, if two 0.2-level regions 
overlap, then 1),( 2.02.0 =BAcrπ  for overlap, and 0 for all other relations.  
 
Take an example, there are two fuzzy regions A and B illustrated in Figure 7.9.  
 
 
 
 
 
 
 
 
 
 

Figure 7.9 Calculation of membership values according to  
crisp-relation-set-based fuzzy query method 

 
The membership values are: 

=),( BAoverlapπ  (0.4-0.2) + (0.7-0.4) + (1-0.7) = 0.8  
=),( BAcontainsπ  0.2  

And the membership values of all other relations are zero.  
 
In practice, the cover and coveredby relations are seldom derived between two fuzzy 
regions. They are merged into the contains and inside relations respectively.   
 
Formula (4) is derived based on the condition that each α-level region is a simple crisp 
region. If a α-level region has several simple crisp regions, we can change formula (4) 
into (5) to derive membership values for each basic relation by: 

∑∑
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π                    (5) 

where ki is the number of crisp relations between two α-level regions. And each ki can 
be calculated according to formula (2). This is also the formula for calculating 
membership values of basic relations between two fuzzy regions.  
 

7.5.4 Fuzzy-relation-set-based fuzzy query method 

The above method derives the relations by crisping fuzzy objects at each level. It is also 
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possible to query based on the fuzzy relation set introduced in Section 7.3. The fuzzy 
relation set is a set of qualitative fuzzy topological relations between two fuzzy α-level 
regions. However, since the number of qualitative relations is too big, it is necessary to 
reduce the relation numbers.  
 
We propose a fuzzy-relation-set-based method to query fuzzy regions in the following 
steps. Firstly we detect the qualitative relations between two fuzzy α-levels; then we 
group qualitative relations into certain operators according to some rules; and then we 
generate the membership values for each of the operators according to the fuzziness of 
fuzzy regions. In Section 7.4 the six basic relations are defined and they are fuzzy 
topological; therefore they can be adopted as the operator names. According to their 
definitions, all qualitative relations can be grouped into one of these basic relations. We 
propose a fuzzy-relation-set-based fuzzy query method, in which each operator is a basic 
relation that is derived from the qualitative relation between two fuzzy α-level regions, 
and membership values of the basic relation are derived from the membership values of 
two fuzzy regions. 
 
Supposing there are two fuzzy regions A and B, we can cut fuzzy regions A and B at 
each α-level into a set of two fuzzy regions α~A  and α~B  (0≤α≤1). Between each pair 
of α~A  and α~B , a qualitative relation can be identified, which can be grouped into the 
six basic relations. Define a basic probability assignment m between 

i
Fα~  for a fuzzy 

region F by  
1~ )( +−= iii

Fm ααα                           (6) 
for ni ≤≤1  where Nn∈  with 11 =α  and 01 =+nα .  m represents the differences 
of successive si 'α . The membership value of a basic relation can be calculated by  

∑∑
= =

⋅
=
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i
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IItype
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i
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BA
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),( ,, ααπ
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where ),(
,,

~~
jiji

BA ααπ  represents a basic relation between 
jiji

BA
,,

~~ and αα  and is assigned 
by either 1 or 0.  For example, if two 0.2-level fuzzy regions overlap, then 

1),( 2.02.0 =BAπ  for the basic relation overlap, 0 for the other basic relations. ki is the 
number of basic relations between two fuzzy α-level regions. Each ki can be calculated 
according to formula (2).  
 
 

7.6 Querying fuzzy objects 

7.6.1 Unary topological operators 

Unary topological operators are used to derive the topological properties of a fuzzy 
object. According to discussions in Section 7.3, the basic unary operations can be 
realized based on the basic properties of a fuzzy region. They are also applicable for a 
fuzzy line and a fuzzy point (see Table 7.9). 
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Table 7.9 Basic properties of a fuzzy region, a fuzzy line and a fuzzy point 
Operator Operand Result Explanation 
Core (fuzzy) region 

/line 
crisp region/line  

Boundary 
of the core 

(fuzzy) region 
/line 

crisp line/point  

Boundary (fuzzy) region 
line 

(fuzzy) region/line The membership values can be 
attached to each point of the 
boundary 

Frontier (fuzzy) 
region/line 

(fuzzy) line/point The membership values can be 
attached to each point of the frontier 

Internal 
boundary 

(fuzzy) 
region/line 

(fuzzy) region/line The membership values can be 
attached to each point of the internal 
boundary 

External 
frontier 

(fuzzy) 
region/line 

(fuzzy) line/point The membership values can be 
attached to each point of the external 
frontier 

Crisp 
object 

(fuzzy) 
region/line/point 

crisp 
region/line/point 

 

α-level 
object 

(fuzzy) 
region/line/point 

crisp 
region/line/point 

 

Fuzzy 
α-level 
object 

(fuzzy) 
region/line 

(fuzzy) region/line The membership values can be 
attached to each point of the object 

 
 

7.6.2 Binary topological operators 

Binary topological operators can be derived according to four query methods. The 
operators between two fuzzy regions are summarized in Table 7.10. These are also 
applicable to querying fuzzy lines and fuzzy points.    
 
 

7.6.3 Interface design 

The interface is designed to fulfill the above query operations to retrieve fuzzy objects. 
Three different kinds of interfaces can be considered: property representation, property 
calculation and query interfaces. Property representation is used to show the properties 
of fuzzy objects. Different types of objects require different variables to be represented. 
The property calculation interface is designed to calculate different properties of fuzzy 
objects. The query interfaces will help to query fuzzy objects according to some 
conditions. Five query interfaces are designed: (1) basic query interface for querying 
according to the properties of one object, (2) combinatorial query interface, (3) 
qualitatively-based fuzzy query interface, (4) crisp-relation-set-based query interface, 
and (5) fuzzy-relation-set-based query interfaces.   
 
 
 



Querying fuzzy spatial objects 

 159 

Table 7.10 Binary topological operations  
Group Operator Operand Operand Result Explanation 

Combinatorial 
query method 

contains, 
inside, 
meet, 
equal, 
overlap, 
disjoint 

fuzzy region 
/line /point 

fuzzy region / 
line/ point 

Boolean  

contains, 
inside, 
meet, 
equal, 
overlap 

fuzzy region 
/line /point 

fuzzy region 
/line /point 

Real  Qualitatively-ba
sed  fuzzy 
query 
method 
 

disjoint fuzzy region 
/line /point 

fuzzy region 
/line /point 

Boolean 

The result is a 
relation with 
membership 
value for 
each basic 
relation. 

Topological 

Crisp/fuzzy-rela
tion-set-based 
fuzzy query 
methods 

contains, 
inside, 
meet, 
equal, 
overlap, 
disjoint 

fuzzy region 
/line /point 

fuzzy region 
/line /point 

Real The result is a 
relation with 
membership 
value for 
each basic 
relation.  

 
 

7.6.4 Query implementation 

Four query interfaces are illustrated in Figure 7.10. The basic query interface is omitted 
since it is the same as the query dialog of ArcView. The unary operations are not 
illustrated. In Figure 7.10(A), the properties are the core, the boundary and the object 
itself. The query operators in all interfaces are six basic relations. The membership 
degrees in the qualitatively-based query interface are assigned by a language variable: 
somewhat for 0.25, basic for 0.5, mostly for 0.75, and absolute for 1. 
 
Different methods can be adopted for different purposes. If we want to retrieve fuzzy 
land cover objects (let’s say bush) that have relation (44) with a certain dry land object, 
the combinatorial methods can be adopted. We may specify that the selected dry land 
overlaps with bush, and overlaps with the core of bush, and the core of dry land 
overlaps with bush, and the core of dry land overlaps with the core of bush. If we just 
want to retrieve fuzzy bush objects that basically overlap the selected dry land in 
general, we can adopt the second method to retrieve them. We can specify that the 
selected dry land overlaps with bush by membership degree basic. If we want to 
retrieve the fuzzy bush objects that overlap the selected dry land above a certain level, 
we can adopt either the third method or the fourth method for the query. We can specify 
that the selected dry land overlaps with bush and input a membership value.  
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Figure 7.10 Four query interfaces  
A. Combinatorial query method; B. Qualitatively-based fuzzy query method;  
C. Crisp-relation-set-based query method; D. Fuzzy-relation-set-based query 

method 
 
 

7.7 Comparison on query methods 
In Section 7.5, four methods are proposed for querying fuzzy regions based on the 
topological relations between two fuzzy regions. Different methods will retrieve 
different fuzzy objects. The combinatorial method can be adopted when we want to 
make a query based on the exact qualitative relation. The second method derives fuzzy 
objects according to qualitative relations and fuzziness in general situations. This 
method is suitable for querying when we just want to get the objects in general. For 
example, if we want to retrieve the objects that are basically inside another object, then 
we can set the operation to contains and the membership degree to basic. The 
crisp/fuzzy-relation-set-based methods can retrieve fuzzy objects more precisely.  
 
The first approach works by a precise specification. The others query objects by using a 
fuzzy relation. In these three methods, the basic relations are the same but the meanings 
and membership values may have some differences.  
 
The relation names in the qualitative-based query method and the fuzzy-relation-set- 

A   B  

C D 
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based query method have the same meaning. However, their membership values are 
derived in different ways. In the qualitatively-based query, membership degree is 
qualitatively assigned. In the fuzzy-relation-set-based query, the membership degree is 
precisely calculated based on the membership values of two fuzzy objects. These 
membership values cannot be compared since they have different premises. Actually the 
fuzzy-relation-set-based query method is a precise version of the qualitatively-based 
query method, in the sense that the membership values are calculated based on the 
membership values of fuzzy regions. 
 
The relation meaning in the crisp-relation-set-based query is different from that in the 
qualitatively-based and fuzzy-relation-set-based query methods. The 
crisp-relation-set-based query is derived based on the crisp topological relations 
between α-level regions of fuzzy regions whereas the other two queries are based on the 
fuzzy topological relations. Therefore, there are some differences. For example, 
between the two fuzzy regions A and B illustrated in Figure 7.11, the membership 
values will be not zero for the two basic relations, A overlap B and A disjoint B, where 
other membership values are zero, in terms of the crisp-relation-set-based relation. 
However, the membership values will not be zero for the basic relations A meet B, and A 
disjoint B if the fuzzy-relation-set-based query method is applied. Both operators are 
applicable and practical.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.11 Comparisons between sub-relations and relative sub-relations 
 
 

7.8 Conclusions and discussions 
This chapter focuses on the topological operations and their implementation for 
querying fuzzy spatial objects. These operations are all applicable to retrieving these 
objects in GIS models. 
 
The topological operations between two fuzzy objects are more complicated than those 
between two crisp objects. Between two fuzzy objects there is a qualitative fuzzy 
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topological relation, which can be formed based on the intersection matrices in which 
the crisp values are adopted. The crisp topological relation set can also be adopted to 
describe the topological relation between two fuzzy objects. The fuzzy topological 
relations can also be represented by a set of qualitative fuzzy topological relations 
between the fuzzy α-level objects of two fuzzy objects.   
 
In order to query fuzzy regions according to these topological relations and topological 
relation sets, the query operators should be defined first. Six basic relation names are 
adopted as the query operators for query operations, since these basic relations have 
their intuitional meaning in GIS and they originate from eight crisp topological relations 
between crisp regions.  
 
Four querying methods are proposed, namely, the combinatorial method, the 
qualitatively-based fuzzy method, the crisp-relation-set-based method, and the 
fuzzy-relation-set based method for queries. They all adopt six basic relations as query 
operators. The first method is combinatorial, which is fulfilled by using different 
sub-relations between different topological properties such as cores and boundaries of 
two fuzzy regions. These operations are crisp.  
 
The second method qualitatively derives the membership degree of basic relations from 
qualitative topological relations, according to the absolute sub-relations. The absolute 
sub-relations are derived between different topological parts of two fuzzy regions.   
 
In the third method, the membership values of operators are calculated based on the 
crisp topological relation set between the α-level regions of two fuzzy regions. The 
eight crisp topological relations between the α-level regions are changed into six 
operations.  
 
The fourth method is to query fuzzy objects based on the fuzzy topological relation set, 
whose members are basic relations that are derived by grouping qualitative relations, 
and the membership values are calculated according to the membership values of fuzzy 
regions in the basic relation.   
   
The analysis starts from the relations between two simple fuzzy regions, then the 
formulae are extended for queries between two fuzzy regions. All these methods can be 
adopted to query fuzzy regions.  
 
Different queries retrieve fuzzy objects in different ways. Different results will be 
achieved when different query methods are adopted. They are useful for retrieving fuzzy 
objects for different purposes.  
 
Since these query methods have different theoretic backgrounds, the results of queries 
are different. Method selection needs to be tested more in practice, especially the choice 
between crisp- and fuzzy-relation-set-based methods. The data structure for 
accommodating fuzzy objects is not mentioned. The optimal query strategy and 
algorithms should be further researched. 
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Chapter Eight 

Reasoning about Changes of Land Cover Objects 

 
 
 
 

8.1 Introduction 
In Chapters 6 and 7, two practical issues were investigated: the generation of fuzzy 
spatial objects and they query of these objects. This chapter will discuss the advantage 
of fuzzy spatial objects for understanding land cover changes.  
 
Currently, spatial objects are represented by crisp forms in most applications. In some 
cases, the spatial objects are crisp, for example administrative boundaries. There are 
more cases where it is not necessary to represent spatial objects in fuzzy forms, since 
the applications just need to investigate the area size and so on. The crisp forms will 
simplify the representation of spatial objects so that processing these spatial objects will 
be relatively easy, and the result of analysis based on the crisp forms is sufficient for the 
applications.  
 
There are also some applications that need fuzzy spatial objects. As we mentioned in 
Chapter 1, if we have to analyze the transitional changes of land cover objects, it is 
better to model land cover objects in fuzzy forms, otherwise the changes from one land 
cover to another will be represented in abrupt changes.  
 
This chapter will discuss how to detect changes of land covers based on fuzzy settings. 
A two-step fuzzy reasoning method is proposed for calculating changes of land covers. 
The fuzzy land cover objects are generated from bi-temporal TM images. These data 
sets contain two kinds of errors: geometric error due to misregistration, and 
misclassification error. The second error is reflected by the membership values of fuzzy 
land cover objects. In order to minimize misregistration error, fuzzy polygons (fuzzy 
regions) are adopted instead of pixels in the first-step reasoning; in order to minimize 
classification error, the difference between spectral values is applied in the second-step 
reasoning.    
 
The structure of this chapter is organized as follows. Section 8.2 generally reviews the 
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change detection methods. Section 8.3 discusses the two-step reasoning methods for 
change detection. Section 8.4 shows fuzzy land covers generated based on the methods 
described in Chapter 6. Section 8.5 shows the results, and comparisons with the 
conventional method. Section 8.6 gives conclusions and discussions.  
 

8.2 Review of change detection methods 
Change detection using land use and land cover maps is the basis of much land cover 
dynamics research. Specifically, a wide variety of remote sensing methods have been 
developed for detecting land use and land cover change in bi-temporal categorical and 
multi-spectral imagery (Gong 1993, Metternicht 1999, Power 2001, Petit and Lambin 
2001). Maybe the simplest method of change detection is to sum the differences 
between the spectral values of every band of the bi-temporal TM images. This method is 
available in almost all remote sensing processing software. The calculation result can 
precisely reflect the spectral change degree that is implicitly caused by the spatial object 
changes. However, because of the complexity of object reflection, the same object may 
reflect a different spectrum at different times, or different objects may reflect the same 
spectrum at different times. Therefore, in practice spectral difference is always taken to 
be a reference.   
 
A more conventional method of change detection is to compare the differences based on 
the classified images; this is called post-classification comparison. It performs a 
pixel-by-pixel overlay of two thematic maps to generate a similarity map and associated 
statistics that indicate regions of disagreement of spatial objects. However, there are 
numerous examples in the literature of concerns about the limitations of the traditional 
methods. Power (2001) pointed out the following limitations: 
 
“One problem with post classification comparison is that the accuracy and usefulness 
of the comparison results depend on the accuracy of the categorical classifications and 
geometric registration of the maps. A second, more important, limitation is that the 
traditional methods can only compare maps that contain Boolean categories. By nature, 
land use patterns are often inherently complex and can consist of an intricate 
intermixture of land use types. Boolean maps must frequently simplify or otherwise 
misrepresent land use patterns, so that the result of a post classification comparison 
may be imprecise. The accuracy of a comparison procedure based on a more reliable 
and robust approach could have a marked improvement in the ability to detect and 
model real world change.  
 
A third problem with the traditional approaches is that, because they are based on a 
pixel-by-pixel comparison, they do not necessarily capture the qualitative similarities 
between two maps.”  
 
In order to avoid the above limitations, he pointed out: 
 
“In contrast, the flexibility of a fuzzy representation of spatial data offers the potential 
for avoiding the problems of traditional comparison procedures. First of all, 
misregistration and locational inaccuracies can be accounted for by fuzzifying the 
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boundaries of the pixels or polygons of the input maps. Generally, the width of the fuzzy 
boundaries will correspond to the level of uncertainty in each of the land use maps. 
Using fuzzy implication algorithm, fuzzy polygons can be compared to determine the 
sections that are different due to error and those that are different because of actual 
land use disagreement (Edwards and Lowell 1996). Secondly, fuzzy set theory provides 
a method of dealing and comparing maps containing a complex mixture of spatial 
information. A fuzzy map is more appropriate for representing a complex land use type, 
such as vegetation coverage, because it enables the pixels or polygons to have multiple 
memberships in the land use classes. Furthermore, a fuzzy map comparison model can 
determine the agreement between fuzzy maps while handling the complexity of the land 
use classes rather than simply ignoring it. Therefore, the degrees and types of 
categorical differences between maps should be determined by a fuzzy post 
classification comparison.” 
 
According to his ideas, the fuzzy representation of spatial data is more suitable for 
change detection. In order to get a fuzzy representation of spatial land use objects, he 
proposed a hierarchical fuzzy pattern matching method to emulate human reasoning 
when comparing multiple maps. In his method, two land use maps are overlapped, and 
the fuzzification is done at the polygon level by subjectively defined membership 
functions.  
 
As we pointed out in Chapter 1, land use land cover objects are fuzzy in nature. There is 
no clear boundary between one category of land cover objects and another. Therefore, it 
is better to represent land cover objects directly in fuzzy representation. We will propose 
a method in which the land cover objects are fuzzy and the change is detected based on 
fuzzy reasoning methods.  
 

8.3 Methods for reasoning about land cover changes  
A methodology for change detection is proposed based on fuzzy reasoning, and consists 
of the following steps: (1) generation of fuzzy land cover objects and derivation of 
differences of membership values; (2) reasoning about changes of categorical fuzzy 
land covers, based on fuzzy polygons (fuzzy regions); (3) reasoning about changes of 
land cover objects.  
 
1. Generation of fuzzy land cover objects and derivation of differences in 
membership values 
 
(1) Generation of fuzzy land cover objects 
In Chapter 1 the methods for generating fuzzy spatial objects are categorized into two 
kinds: subjective and objective. In order to generate fuzzy land cover objects from TM 
images, an objective method is adopted, and used in Chapter 6. Basically the 
membership value is calculated for land cover objects at the pixel level by using 
maximum likelihood classification. That is, for every pixel, there might be several 
membership values, corresponding to different land cover types. For example, there is a 
pixel whose membership values are 0.7 for forest, and 0.3 for bush. This means we will 
not refuse a pixel with several characteristics. This is a more reasonable reflection of the 
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real world, where there is no crisp boundary between two land cover objects. The 
boundary is a broad area from one category to another.  
 
For simplicity, two membership values are allowed for each pixel. If the membership 
value is 1 for one category, then the membership value of the other will be 0. It means 
that the pixel definitely belongs to only one category. If the membership value is less 
than 1 for one category, then the membership value is the complement for the other 
category.  
 
(2) Calculation of membership differences  
After classification, the membership values of every spatial object are derived. For 
conventional crisp land cover objects, the difference between membership values is 
either 0 when the two land cover objects have the same category, or 1 when the 
categories of two land cover objects are different. If the classifications and the 
registration are all error-free, then the change can be detected directly by the difference 
between two land cover maps. In fuzzy settings, the situation is more complicated. A 
pixel may have more than one membership value. For example, a pixel has membership 
values 0.7 for forest and 0.3 for bush at time A; these change into 0.6 for grassland and 
0.4 for waste land at time B. Several possibilities will arise, such as the difference 
between forest and grassland, and the difference between forest and waste land.  
 
Since the changes are complicated, it is almost impossible to tell which category has 
changed into the other. Therefore, the differences between the membership values of 
different categories do not help the change detection. However, the differences can be 
compared if the membership values are of the same category for one pixel. For example, 
if the membership value of a pixel is 0.7 for forest at time A, and the membership value 
of that pixel is 0.2 for forest at time B, then the membership difference can be explained 
as a 50% decrease in the degree of forest membership of that pixel between times A and 
B. In this way, we will create n fuzzy comparison maps if there are n land cover 
categories.    
 
Figure 8.1 shows the above process. Figure 8.1(A) shows the fuzzy forest polygons on 
the old land cover map, and Figure 8.1(B) shows the forest polygons on the new land 
cover map.  Figure 8.1(C) shows the difference between two forests.  
 

 
               

 
 
Figure 8.1 The membership difference between the old and new land cover objects 
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2. Reasoning about changes of fuzzy land covers based on categorical polygons 
 
(1) Selection of reasoning methods 
The purpose of a fuzzy inference system is to describe the change degree between land 
cover maps using linguistic variables that are represented by membership functions. 
Formally, a linguistic membership function is a mathematical curve that represents a 
person’s intuitive perception of the degree of matching between sections of the input 
maps. By converting the linguistic expressions into membership functions, the change 
degree will be produced from the input maps. 
 
Two fuzzy reasoning methods, namely the Mamdani and Tsukamoto methods, were 
described in Section 2.4. The Mamdani reasoning system is a rule-based decision model 
that produces mathematical control statements as output membership functions to 
handle the interactions of the inputs to the system. The general process is described in 
Figure 2.8. The design of this system requires a developer to create both input and 
output membership functions from linguistic interpretations of a subject. Through the 
compositional rule of inference and a defuzzification algorithm, Mamdani’s system will 
produce an overall output value from the output membership functions. The advantage 
of Mamdani’s fuzzy inference systems is that the fuzzy input and output membership 
functions are better suited to handling fuzziness and data uncertainty and work better 
with human input. A disadvantage is that the defuzzification process is 
computation-intensive and not easily subjected to rigorous quantitative analysis.  
 
Unlike the Mamdani system, the Tsukamoto system does not contain output fuzzy 
membership functions. The individual crisp output is calculated based on the fuzzy 
equations and the final output is the weighted average of the individual crisp outputs. 
This system cannot propagate fuzziness from the input to outputs in an appropriate 
manner. For our purpose, the Mamdani method is selected for reasoning about change 
degrees of land covers. 
 
(2) Average of membership values of polygons 
If the classifications and membership values, as well as the registration are all error-free, 
then the comparison can be made directly by the differences in these n land cover 
categories. However, all these aspects contain errors. In order to minimize the effect of 
misregistration between two land cover maps, the polygon matching method is better 
than the pixel-by-pixel method (Power 2001). Power adopted the polygons that are 
derived from the intersection between the old land cover map and the new land cover 
map as the minimal unit for the reasoning. The intersection ratio between the new 
polygon and the old polygon is applied as the data source for fuzzy reasoning. 
 
For the same reason, we adopt the polygons for the reasoning. The fuzzy polygons are 
identified by the intersection between the old land cover map and the new land cover 
map. The polygons are based on the new land cover map. Figure 8.2 shows the 
intersection polygons.  
 
By the intersection of each polygon with the comparison maps, we will get a set of 
membership difference values for each polygon. These membership differences are then 
averaged as the attribute of each polygon.  
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Figure 8.2 Generation of polygons for reasoning  

 
(3) Creation of membership functions 
The creation of input membership functions depends on the development of a linguistic 
scaling of the change degree of the polygons from the averaged membership values of 
these polygons. Semantic expressions are needed as answers to the question: “To what 
degree has the land cover changed for a specific polygon?” A five point scale is 
generated, ranging from tiny change to huge change in the membership difference of 
polygons. The meaning of these scaling values is as follows: 
 

Tiny: the average of membership differences is very small;  
Small: the average of membership differences is small; 
Medium: the average of membership differences is medium;  
Large: the average of membership differences is large; 
Huge: the average of membership differences is very large. 

 
Five linguistic variables are designed to represent the average membership differences: 
tiny, small, medium, large and huge (Figure 8.3). Three trapezoid curves are adopted as 
the membership functions to represent the linguistic variables small, medium and large 
of the average of membership difference. A decreasing half-trapezoid curve is used as 
the membership function to represent the linguistic variable tiny, and an increasing 
half-trapezoid curve for the linguistic variable huge. These membership functions match 
human intuition about the magnitude of difference. If the difference is less than a small 
value, then the difference is tiny. If the difference is greater than a large number, then 
the difference is very large. The transition between these linguistic variables is smooth.  
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Figure 8.3 Membership functions of input variables (membership difference)  
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Similar membership functions are adopted to represent the linguistic variables for the 
polygon area, which is converted to pixel numbers. Following Power’s idea, three 
linguistic variables are designed to represent the pixel numbers few, normal and many. 
The parameters of these membership functions are illustrated in Figure 8.4. If the pixel 
number is less than 2*2 pixels, people normally regard the area is small. Sometimes, the 
size of four pixels is taken as the smallest mapping unit in many applications. The 
membership function is designed by a decreasing half-trapezoid curve. If the pixel 
number is between 2*2 and 4*4 pixels, then the pixel number is regarded as normal size, 
which is represented by a trapezoid curve. If the pixel number is greater than 3*3, then 
the pixel number is many, represented by an increasing half-trapezoid curve.  
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Figure 8.4 Membership functions of input variables (pixel number)  
 
 
For the output, five linguistic variables are designed to represent the change degree for 
the categorical land covers: tiny, small, medium, large and huge (Figure 8.5). 
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Figure 8.5 Membership functions of output variables  
(change degree of the categorical land covers)  

 
(4) Inference rules  
The essential part of a fuzzy inference system is a set of fuzzy rules that are related by 
means of a fuzzy implication function and a compositional rule of inference, as 
introduced in Chapter 2. Fuzzy rules are a collection of linguistic IF-THEN statements 

Many
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that describe how a fuzzy inference system makes a decision about categorizing an 
input or controlling an output.  
 
In Mamdani’s reasoning method, the fuzzy rules are represented by a Mamdani 
implication function. The implication process defines the associations between the input 
membership functions and determines the consequence of a rule. Furthermore, the fuzzy 
implication of a rule depends on its IF-THEN connective operator, which expresses how 
a fuzzy rule is delineated by a fuzzy relation. The premise variables a and b of the rules 
are connected by the minimum operator min(a,b). The fuzzy rules are expressed as:  
 

IF a and b, THEN c. 
 
Fifteen rules are designed subjectively for the fuzzy reasoning. In order to minimize the 
effect of misregistration error, the result of these inference rules changes transitionally 
based on the combination of membership difference and pixel numbers.   
 
They are as follows: 
 

(1) If the membership difference is tiny, and the pixel number is few, then the change 
degree is tiny; 

(2) If the membership difference is small, and the pixel number is few, then the change 
degree is tiny;  

(3) If the membership difference is medium, and the pixel number is few, then the change 
degree is tiny;  

(4) If the membership difference is large, and the pixel number is few, then the change 
degree is small;  

(5) If the membership difference is huge, and the pixel number is few, then the change 
degree is medium;  

(6) If the membership difference is tiny, and the pixel number is normal, then the change 
degree is tiny;  

(7) If the membership difference is small, and the pixel number is normal, then the change 
degree is small;  

(8) If the membership difference is medium, and the pixel number is normal, then the 
change degree is medium; 

(9) If the membership difference is large, and the pixel number is normal, then the change 
degree is medium;  

(10) If the membership difference is huge, and the pixel number is normal, then the change 
degree is large;  

(11) If the membership difference is tiny, and the pixel number is many, then the change 
degree is tiny; 

(12) If the membership difference is small, and the pixel number is many, then the change 
degree is small;  

(13) If the membership difference is medium, and the pixel number is many, then the change 
degree is medium;  

(14) If the membership difference is large, and the pixel number is many, then the change 
degree is large; 

(15) If the membership difference is huge, and the pixel number is many, then the change 
degree is huge.  

 
(5) Defuzzification 
To obtain a crisp change degree value, it is necessary to transform the output 
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membership functions produced by the inference system algorithm into a crisp number. 
There are numerous methods for the defuzzification process, and two of them were 
introduced in Chapter 2. For the defuzzification, the central area method is adopted.  
  
(6) Composition of results of fuzzy reasoning  
The reasoning is individually processed for each category of fuzzy land covers. 
Therefore we will get n results of change degree for categorical land covers. Since the 
polygons may overlap with each other, the result is also overlapped. That is, we will get 
two results for each pixel, showing the change degree. For example, the change degree 
for forest is illustrated in Figure 8.6(A), and the change degree for bush in Figure 
8.6(B). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6 Composition of change degree for different land covers 
 
In order to know the change degree for each pixel, we have to make a composition of 
these results. The composition is calculated by the sum of change degree of each land 
cover for each pixel. That is, supposing there are n fuzzy land cover categories, then the 
change degree is: 

∑
=

=
n

i
izCD

1
 

 
where CD is the crisp value representing the categorical change degree, and iz  is the 
crisp value of the change degree for each land cover. Figure 8.3(C) shows the 
composition of change degree for bush and forest. 
 
3. Reasoning about change degree of land covers 
 
The result after the above reasoning will show the change degree of land cover objects 
based on categorical polygons. If the categories are correctly classified and membership 
values at each pixel are precisely calculated, then the above result is able to show the 
change degree of land covers, avoiding the misregistration errors. However, as we know, 
there are always errors in image classification. The fuzzy land covers are derived based 
on maximum likelihood classifiers. The fuzzy land cover objects contain errors in 
categories as well as membership values. In order to minimize the errors in fuzzy land 
cover objects, the change degree of a land cover object is calculated based on the 
combination of the spectral value changes and the above category change results. 

A B C
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The input linguistic variables are the categorical change degree and the spectral value 
differences. The polygonal change degree is represented by five scaling variables, 
whose membership functions are the same as the membership functions described in 
Figure 8.5.   
 
The values of spectral changes are derived based on the comparisons between two 
images. Figure 8.7 shows the values. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.7 Spectral value differences 
 
The input of the spectral value change for the fuzzy reasoning is represented by five 
linguistic variables: tiny, small, medium, large and huge. The meaning of these variables 
is explained as: 
 

Tiny: the spectral value change is tiny; 
Small: the spectral value change is small; 
Medium: the spectral value change is medium; 
Large: the spectral value change is large; 
Huge: the spectral value change is very large. 
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Figure 8.8 Membership functions of input variables (spectral value change)  
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The parameters of the membership functions of these five variables are illustrated in 
Figure 8.8. 
 
The reasoning rules are designed as follows: 
 

(1) If the spectral value change is tiny, and the categorical change is tiny, then the change 
degree is tiny; 

(2) If the spectral value change is small, and the categorical change is tiny, then the change 
degree is tiny; 

(3) If the spectral value change is medium, and the categorical change is tiny, then the 
change degree is tiny; 

(4) If the spectral value change is large, and the categorical change is tiny, then the change 
degree is small; 

(5) If the spectral value change is huge, and the categorical change is tiny, then the change 
degree is small; 

(6) If the spectral value change is tiny, and the categorical change is small, then the change 
degree is tiny; 

(7) If the spectral value change is small, and the categorical change is small, then the 
change degree is small; 

(8) If the spectral value change is medium, and the categorical change is small, then the 
change degree is small; 

(9) If the spectral value change is large, and the categorical change is small, then the 
change degree is medium; 

(10) If the spectral value change is huge, and the categorical change is small, then the change 
degree is medium; 

(11) If the spectral value change is tiny, and the categorical change is medium, then the 
change degree is tiny; 

(12) If the spectral value change is small, and the categorical change is medium, then the 
change degree is small; 

(13) If the spectral value change is medium, and the categorical change is medium, then the 
change degree is medium; 

(14) If the spectral value change is large, and the categorical change is medium, then the 
change degree is large; 

(15) If the spectral value change is huge, and the categorical change is medium, then the 
change degree is large; 

(16) If the spectral value change is tiny, and the categorical change is large, then the change 
degree is small; 

(17) If the spectral value change is small, and the categorical change is large, then the 
change degree is medium; 

(18) If the spectral value change is medium, and the categorical change is large, then the 
change degree is medium; 

(19) If the spectral value change is large, and the categorical change is large, then the change 
degree is large; 

(20) If the spectral value change is huge, and the categorical change is large, then the change 
degree is huge; 

(21) If the spectral value change is tiny, and the categorical change is large, then the change 
degree is small; 

(22) If the spectral value change is small, and the categorical change is large, then the 
change degree is medium; 

(23) If the spectral value change is medium, and the categorical change is large, then the 
change degree is large; 

(24) If the spectral value change is large, and the categorical change is large, then the change 
degree is large; 
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(25) If the spectral value change is huge, and the categorical change is large, then the change 
degree is huge; 

 
Based on these inference rules, the change degree can be inferred. The final crisp value 
is defuzzified based on the center of area. It can be regarded as the final result of the 
change degree between two land cover maps.  
 

8.4 Test area 
Sanya city is selected as the test area. The city is located on Hainan Island, in the south 
of China. The TM images were obtained on 18 April 1990 (A) and 27 October 1998 (B). 
Figure 8.9 shows about 220*200 pixels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.9 Two TM images 
 
The registration is done by ARC/INFO. The mean average error (RMS) of the 
registration between two images is 0.8. 
 
The bi-temporal images were classified into 11 categories of land cover objects. The 
categories were depicted in Chapter 6. The categories are then merged into eight 
categories, where the paddy field and dry land are merged into arable land, rural land 
and built-up area are merged into residential area, and waste land and bare land are 
grouped into waste land.   
 
The eight classes are as follows: 

(1) Forest: in a pixel most trees are greater than 6 m with the canopy generally 
covering over 80% of the pixel;  

(2) Bush: in a pixel most trees are between 2 and 6 m with the canopy generally 
covering over 50% to 80% of the pixel; 

(3) Shrub and grassland: in a pixel there are some trees normally less than 2 m 
with the canopy generally covering between 50 and 80% of the pixel; 

(4) Waste land: in a pixel there are some trees less than 1 m with the canopy 

A B 
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generally covering between 0 and 50% of the pixel; 
(5) Water body: a pixel covered by water; 
(6) Beach: a pixel covered by wet sands and some water; 
(7) Arable land: which includes paddy field and dry land;  
(8) Residential area: most of the pixel covered by buildings, roads or other 

construction material. 
 
The dominant layer of two fuzzy land cover maps is illustrated in Figure 8.10. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.10 Crisp representation of land cover objects 
 
Figure 8.11 shows the dominant layer of two fuzzy land objects with membership 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.11 Fuzzy representation of land cover objects (dominant objects) 

A: Crisp land cover objects in the 
old image 

B: Crisp land cover objects in 
the new image 
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For the old land cover map, the accuracy of the classification is 88% for the dominant 
class and 75% for the secondary class; the overall accuracy is 67%. For the new land 
cover map, the accuracy of the classification is 80% for the dominant class and 70% for 
the secondary class; the overall accuracy is 60%. 
 

8.5 Results 

8.5.1 Results 

(1) Results of change degree based on categorical polygons 
 
The results of change degree of land covers based on categorical polygons are shown in 
Figure 8.12. Figure 8.12(A) shows the results of changes of land cover polygons. Figure 
8.12(B) shows the crisp result of change in which the change value is greater than 60.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.12 Changes in categorical land cover polygons  
 
Table 8.1 Changes of land cover polygons 
Old_class Total_pixel Change_pixel Percentage
Arable 1597 1318 83%

Beach 1667 1112 67%

Bush 3107 612 20%

Residential 1022 437 43%

Forest 871 422 49%

Grassland 3802 2404 63%

Waste land 402 151 38%

Water 24014 420 2%
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Because of the errors in land cover classifications, the change between land cover 
polygons is exaggerated in many places, although these places have almost no change in 
land covers. Table 8.1 shows these changes based on the old crisp land cover polygons 
(Figure 8.10(A)). In Table 8.1, the residential area shows a 43% change into other land 
covers. However, this is almost impossible in reality.  
   
Table 8.2 shows the details of residential areas changes. 23% of residential areas have 
changed into grassland, most of which is wrong. This is because these residential areas 
are covered by many individual trees in the new image and therefore wrongly classified 
into grassland.  
 
Table 8.2 Changes of residential polygons 
Old_class New_class Total_pixel Pixel_number Value
Residential Arable 1022 8 0.78%

Residential Beach 1022 96 9.39%

Residential Bush 1022 52 5.09%

Residential Residential 1022 585 57.24%

Residential Forest 1022 0 0.00%

Residential Grassland 1022 236 23.09%

Residential Waste land 1022 43 4.21%

Residential Water 1022 2 0.20%

 
 
(2) Results of reasoning about change degree of land covers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.13 Changes of land covers  
 
Figure 8.13 shows the results of change degree of land covers. Errors due to the wrong 
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classifications are much decreased. Figure 8.13(A) shows the fuzzy representation of 
changes of land covers based on the new land cover map. Figure 8.13(B) shows the 
crisp result of change in which the change value is greater than 60.  
 
Table 8.3 shows the improvement made by the second-step reasoning. The changes 
from residential area into others are much decreased. In total only 5.5% has changed 
into other land covers. Compared with 57.24% in Table 8.2, this is a decrease of almost 
52%. 
 
Table 8.3 Changes of residential area based on the old land cover map 
Old_class New_class Total_pixel Adjusting Pixel Change_ 

Percentage 
Residential Arable 1022 No change 8  
Residential Beach 1022 No change 81  
Residential Beach 1022 Changed 15 1.47% 

Residential Bush 1022 No change 49  
Residential Bush 1022 Changed 3 0.29% 

Residential Residential 1022 No change 581  
Residential Residential 1022 Changed 4 0.39% 

Residential Grassland 1022 No change 215  
Residential Grassland 1022 Changed 21 2.05% 

Residential Waste 1022 No change 32  
Residential Waste 1022 Changed 11 1.08% 

Residential Water 1022 Changed 2 0.20% 

 
Table 8.4 Changes of land covers based on the old land cover map 
Old_class Total_pixel Change_pixel Percentage

Arable 1597  650 40.7%

Beach 1667  332 19.9%

Bush 3107  38 1.2%

Residential 1022  56 5.5%

Forest 871  1 0.1%

Grassland 3802  288 7.6%

Waste land 402  100 24.9%

Water 24014  224 0.9%

 
Table 8.4 shows the changes of land covers based on old land cover maps. It shows that 
the arable land changes a lot over eight years. Forest, bush and water area show almost 
no changes. Actually these three land covers are very stable in Sanya city. Nearly 25% 
of waste land changes into other land covers. In many areas, beach and waste land have 
changed into grassland. 5.5% of residential area has changed into other land covers. 
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Table 8.5 shows the changes based on the new land cover map, and the net change 
percentages. Percentage1 is the increase percentage of the land cover from other land 
covers. Percentage2 is the decrease percentage of the land cover into others. The net 
change is percentage1 minus percentage2. This shows that over eight years arable land 
decreases nearly 30%, and grassland increases 13.5%. The residential area increases 
13.5%, and bush increases nearly 5%.  
 
Table 8.5 Changes of land covers 
New_class Total_ 

Pixel 
Change_

pixel 
Percentage1 Percentage2 Net change 

Arable 479  54 11.0% 40.7% -29.7% 

Beach 1184  206 17.0% 19.9% -2.9% 

Bush 5025  288 6.0% 1.2% 4.8% 

Residential 1512  282 19.0% 5.5% 13.5% 

Forest 908  2 0.0% 0.1% -0.1% 

Grassland 2907  612 21.0% 7.6% 13.4% 

Waste land 507  132 26.0% 24.9% 1.1% 

Water 23960  113 0.0% 0.9% -0.9% 

 

8.5.2 Comparisons 

The above method calculates the changes of land covers by a two-step reasoning 
method. If the land covers are crisply represented, the changes between land covers can 
be calculated directly based on the difference between the old and new land cover 
polygons. Figure 8.14 shows the results of changes based on land cover polygons. It is 
unrealistic since in reality there is not such a big change. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.14 Crisp changes of categorical land cover polygons  
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We can adjust these changes also based on the spectral differences between two images. 
For example, we can assume that if the spectral difference is greater than 180, then there 
is a change; and if the spectral difference is less than 25, then there is no change; 
between 25 and 180, there is a transitional change. Then we will also derive a change 
map of land covers. However, since the spectral value difference does not mean changes 
of land covers, it will show that some water areas that actually are unchanged have 
changed. Figure 8.15 shows the land cover changes based on this method. The left-hand 
lower corner is the sea area, but since there is a difference in spectral values, it also 
shows changes. If we calculate changes at 0.5-level, Figure 8.15(B) can be derived. 
However, many changes are neglected, for example changes from grassland to 
residential area.   
 
 
  
 
 
 
 
 
      
 
 
 
 
 
 
 
 

Figure 8.15 Changes of land covers considering spectral value changes  
 

8.5.3 Transitional changes of land covers 

The above comparison shows that adopting the fuzzy reasoning method achieves better 
results than traditional crisp methods. One of the biggest advantages of using fuzzy 
reasoning is that not only can the changes be calculated, but the transitional changes can 
also be detected. It should be mentioned that forest or bush regeneration and succession 
are complex and complicated processes that are often difficult to model with traditional 
Boolean techniques. This is partly due to the inability of such techniques to represent 
the intermediate growth patterns. The changes of bush are illustrated in Figure 8.16. 
Although the change of bush is 6% based on the new land cover map, there are many 
transitional changes from bush to others and others to bush. 
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Figure 8.16 Transitional changes of bush 
 
 

8.6 Conclusions and discussions 
The comparison of land cover maps is the basis for many dynamic analysis of land use 
and land covers. The traditional method usually compares the differences based on a 
crisp pixel-by-pixel method. These Boolean similarity operations often cannot 
adequately account for the errors and complexity inherent in spatial information. A 
fuzzy method may mitigate these difficulties.  
 
In this chapter, a two-step reasoning method is proposed for measuring both similarities 
and land cover changes between maps while accounting for the errors in the data sets. It 
has been shown that this method is less affected by misregistration errors and 
classification errors. The first-step reasoning largely solves the misregistration errors 
because the comparison is done based on fuzzy polygons. In order to solve the 
misclassification errors, the fuzzy reasoning is made by combining spectral value 
differences with the results of the first-step reasoning. Furthermore, the transitional 
changes of land covers can be detected since rich information can be derived by the use 
of fuzzy reasoning.  
 
In this method, several issues should be mentioned. Firstly, the first-step reasoning will 
minimize the misregistration errors; however, in the second-step reasoning, the 
misregistration error is re-imported because of misregistration of two images. Possibly a 
better method is to integrate two reasoning steps into one step. Secondly, the 
classification errors are minimized by combining the spectral value differences. The 
spectral value difference is actually the distance sum between each band of images. This 
data source can be replaced by other direct results from two images; for example, we 
can also measure the angles between the bands of two images. Thirdly, it should be 
mentioned that no matter what data sources are adopted to improve the change 
calculation, these data also contain errors besides the misregistration. This method 
cannot remove the errors, but it will greatly decrease them. Fourthly, the fuzzy 
reasoning rules are designed based on practical knowledge. It is also possible to adopt a 

Change degree
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fuzzy neural network approach to improve the fuzzy reasoning rules. The fuzzy neural 
network approach will greatly reduce the subjective effect of humans. Finally, more 
investigation should be carried out into spatial correlation. The spatial correlation 
between the land cover maps derived from two images is certain if no land cover 
changes totally. Spatial correlation can also improve the calculation of changes caused 
by misregistration and misclassification errors, since it measures the patterns of land 
covers.  
 
This chapter provides the way for adopting fuzzy land cover objects to improve the 
understanding of land cover changes. The result shows that fuzzy spatial objects can be 
used not only to achieve more precise results, but will also to derive more information 
from spatial objects.  
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Chapter Nine 

Conclusions and Discussions 

 
 
 
 

9.1 Summary 
Currently most GISs represent natural phenomena by crisp spatial objects. In fact many 
natural phenomena have fuzzy characteristics. The representation of these objects in the 
crisp form greatly simplifies the handling methods for GIS and can still achieve useful 
results for many applications. However, this simplification cannot precisely describe 
these natural phenomena, and it will cause loss of information in these objects. In order 
to describe natural phenomena more precisely, the fuzziness in these natural phenomena 
should be described and represented in GIS to derive better results and for a better 
understanding of the real world.  
 
The central topic of the whole thesis focuses on fuzzy spatial objects for 
accommodation in a GIS. Several issues are discussed theoretically and practically, 
including defining fuzzy spatial objects, the topological relations between them, 
modeling fuzzy spatial objects, generating fuzzy spatial objects and the advantage of 
using fuzzy spatial objects for certain applications.  
 
A formal definition of spatial objects is usually derived based on highly abstract 
mathematics such as set theory and topology. Fuzzy set theory and fuzzy topology are 
the ideal tools for defining fuzzy spatial objects theoretically. In general, fuzzy set 
theory is a natural extension of classic set theory, such that an object is not a set of 
elements either true or false, but it is a set of elements with a degree of membership in 
the range 0 to 1. Fuzzy topology is also a natural extension of ordinary topology that is 
built up based on fuzzy sets. Since a crisp set is a special form of fuzzy set, the ordinary 
topology is also a special form in fuzzy topology in which the crisp set is just a special 
case. However, because of the extension, several properties holding between crisp sets 
do not hold for fuzzy sets. For example, the excluded-middle law does not hold between 
fuzzy sets. These are the same in fuzzy topology. For example, the neighborhoods of a 
fuzzy set cannot be adopted for defining fuzzy topology. On the other hand, many 
notions should be extended for fuzzy set theory as well as for fuzzy topology. The same 
notions may have different meanings. For these notions the best link between the 
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ordinary topology and fuzzy topology is that the fuzzy topological space of a universe is 
induced from the ordinary (crisp) topological space. Many properties of a crisp 
topological space still hold in the induced fuzzy topological space.  
 
In order to define fuzzy spatial objects, several notions are revisited around the 
definition of fuzzy boundary in fuzzy topology. Three definitions of fuzzy boundary are 
analyzed and one is selected for defining fuzzy spatial objects. Besides the fuzzy 
boundary, several notions such as the core, the fringe, the frontier, the internal fringe, 
the external fringe and the outer of a fuzzy set are defined. The relationships between 
these notions and the interior, the boundary and the exterior of a fuzzy set are revealed. 
In general, the core tells a finer structure than the interior, and the fringe shows a finer 
structure than the boundary of a fuzzy set in fuzzy topological space. These concepts are 
all proven to be topological properties of a fuzzy topological space.  
 
The definition of a simple fuzzy region is derived based on the topological properties. It 
has been discussed twice in the thesis. Firstly, the definition of a simple fuzzy region is 
given in a special fuzzy topological space called crisp fuzzy topological space, since 
most topological properties of a fuzzy set in the fuzzy topological space are the same as 
those in crisp topological space. A formal definition of a simple fuzzy region is 
proposed based on the discussion of the topological properties besides the interior, the 
boundary and the exterior of a fuzzy set in the general fuzzy topological space. A crisp 
simple region is a special form of a simple fuzzy region.  
 
One of the fundamental aspects of fuzzy spatial objects is the topological relations. This 
topic is intensively discussed in the thesis. The problem using the 9-intersection 
approach for the identification of topological relations between fuzzy spatial objects is 
revealed. In order to derive the topological relations between fuzzy spatial objects, the 
9-intersection approach is updated into the 3*3-intersection approach in the crisp fuzzy 
topological space. Furthermore, the 4*4-intersection matrix is built up by using the 
topological properties of fuzzy sets, and the 5*5-intersection matrix can be built up 
based on a certain condition in crisp fuzzy topological space. These matrices are then 
updated in the general fuzzy topological space by using other topological properties of 
fuzzy sets. Two 3*3-intersection and one 4*4-intersection matrices are presented in the 
general fuzzy topological space. The topological relations between simple fuzzy regions 
are then identified based on the topological invariants in the intersections of the 
intersection matrices.  Forty-four (44) and 152 relations are identified between two 
simple fuzzy regions by using the empty/non-empty topological invariants in the 
intersections.  
 
The modeling of fuzzy spatial objects should be done not only for simple fuzzy regions, 
but also for fuzzy lines and fuzzy points. In order to model fuzzy lines and fuzzy points 
and the topological relations between fuzzy spatial objects, a fuzzy cell complex is 
proposed based on fuzzy cells. Fuzzy region, fuzzy line and fuzzy point are then defined 
according to this structure. The relations between these fuzzy spatial objects are then 
identified. The fuzzy cell complex structure can easily model the fuzzy spatial objects. 
It constitutes the theoretic framework for modeling fuzzy spatial objects. 
 
After dealing with the theoretic framework for modeling fuzzy spatial objects, the thesis 
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addresses several practical issues of applying fuzzy spatial objects. The first issue is 
how to generate fuzzy spatial objects. A composite method is proposed for generating 
fuzzy land cover objects. It involves several steps, from the design of membership 
functions to classification and refining the membership values of fuzzy land cover 
objects.  
 
Another practical issue is how to query fuzzy spatial objects, particularly based on 
topological relations. In traditional GIS, the query operators are defined based on the 
relatively small number of topological relations. However, there are many topological 
relations between two fuzzy spatial objects. In order to query fuzzy spatial objects, the 
query operators are formed based on the six common-sense operators in traditional GIS. 
Then the 44 or 152 topological relations are grouped into these operators by four 
different methods. These methods constitute the query methods to meet the different 
requirements of applications. 
 
The third practical issue is how to use fuzzy spatial objects in real applications. Since 
the dynamics of land covers is a very important topic in China, the focus is on 
calculating changes of land covers. Sanya city is selected as the test area. A fuzzy 
reasoning method is discussed for calculating the changes. It shows that, with the fuzzy 
objects, not only can the changes be calculated, but also the details of the changes can 
be revealed.  
    

9.2 Conclusions 
Concerning the research questions, the following conclusions can be drawn:  
 

(1) Fuzzy set theory and fuzzy topology are the ideal mathematical tools for 
defining fuzzy spatial objects. There are many topological properties for a 
fuzzy set in fuzzy topological space that can be adopted for the formal 
definition of fuzzy spatial objects. A simple fuzzy region, fuzzy region, simple 
fuzzy line, fuzzy line and fuzzy point are formally defined based on the 
topological properties of a fuzzy set in fuzzy topological space.  

(2) Topological relations should be identified based on the topological properties 
of fuzzy spatial objects. Two forms of a 3*3-intersection matrix and one 
4*4-intersection matrix are introduced using different properties of fuzzy sets. 
These matrices can be adopted for identifying topological relations between 
fuzzy spatial objects. Besides 44 topological relations, 152 relations are 
identified between two simple fuzzy regions. 

(3) A theoretic framework for modeling fuzzy spatial objects can be built based 
on the fuzzy cell complex structure. The structure is able to represent fuzzy 
points, lines, and regions. The topological relations between different fuzzy 
spatial objects can be identified based on intersection matrices.   

(4) There are many methods for generating fuzzy spatial objects. The composite 
method is one of the methods that can be used to generate fuzzy spatial 
objects.  

(5) The query of fuzzy spatial objects in GIS should be simple and easily 
understandable. Different applications may have different requirements. The 
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four different query methods in the thesis can meet different requirements in a 
relatively complete way, yet they are all derived based on a strong theoretic 
background.  

(6) The utilization of fuzzy spatial objects is decided by the applications. Fuzzy 
spatial objects are absolutely suitable for analyzing most natural phenomena 
since they have fuzzy characteristics. One of the advantages of adopting fuzzy 
spatial objects lies in the fact that many details can be revealed.  

 
Concerning the objectives, the thesis has provided a formal definition of fuzzy spatial 
objects, several intersection approaches for identifying the topological relations between 
fuzzy spatial objects, a theoretic framework for modeling fuzzy spatial objects, a 
method for generating fuzzy spatial objects, and several query methods for different 
requirements; moreover, it shows the capability of fuzzy spatial objects to improve 
understanding of land cover changes. It is better to represent natural phenomena in the 
fuzzy form since it can provide more information than the crisp form. 
 

9.3 Contributions 
The main contribution of the thesis is the analysis of topological relations between 
fuzzy spatial objects. It can be broken down into several aspects: 
 

(1) There are more topological properties of a fuzzy set in fuzzy topological space. 
The core, the fringe, the frontier, the internal fringe, the external fringe, the 
outer, etc. are all topological properties. The analysis of these notions will help 
us to recognize the structure of fuzzy topology in more detail.  

(2) Fuzzy spatial objects are formally defined. The definition includes fuzzy 
simple region, fuzzy region, fuzzy simple line, fuzzy line, and fuzzy point. 
Since these definitions are strictly derived from the properties of a fuzzy set in 
fuzzy topological space, they will greatly help modeling fuzzy spatial objects 
in practice.  

(3) Methods for identifying the topological relations between two fuzzy spatial 
objects are presented. The different forms of the 3*3-intersection matrices, the 
4*4-intersection matrix and the 5*5-intersection matrix are formalized for the 
identification of topological relations. Forty-four (44) topological relations are 
identified between two simple regions based on a 3*3-intersection matrix, and 
152 relations are also identified based on the 4*4-intersection matrix.  

(4) The fuzzy cell complex structure is proposed based on fuzzy cells. It can be 
applied to model fuzzy spatial objects, including fuzzy points, fuzzy lines and 
fuzzy regions. The topological relations between different kinds of fuzzy 
spatial objects are systematically analyzed and identified. 

 
Other contributions include:  

(1) A composite method for generating fuzzy spatial objects. The method is 
verified by generating fuzzy land cover objects from TM images.  

(2) Four different methods are proposed for querying fuzzy spatial objects based 
on topological relations. These methods share the same query operators, which 
are simple and easily understood.   
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(3) A reasoning method is proposed for calculating changes of land covers. This 
method will reduce the uncertainties in data sets.  

 

9.4 Discussions 
Many issues should be discussed.  

(1) The topological properties including the core, the fringe, the internal fringe, 
the frontier, the outer etc., of a fuzzy set in fuzzy topological space should be 
systematically analyzed. In the thesis a general analysis has been done to 
reveal the links between these properties and the interior, the boundary, the 
closure and the exterior of a fuzzy set. It should be pointed out that the 
analysis is just used to form fuzzy spatial objects. More research is needed on 
fuzzy topology.   

(2) The topological relations should be further investigated. The 3*3-, 4*4- and 
5*5-intersection matrices are all derived based on topological properties. The 
44 or 152 relations are all identified based on the crisp topological invariants 
such as empty/non-empty intersections, and four comparisons. These relations 
are all fuzzy topological but are qualitatively described. More research on 
fuzzy topological relations should be done in the future.  

(3) The definition of a simple fuzzy region is proposed based on the general fuzzy 
topological space. However, the definition includes many limitations. Are 
there some methods to simplify the definition? 

(4) A formal model is proposed for representing fuzzy spatial objects. The part of 
the implementation of this model in computers is done based on current GIS 
software. However, conventional GIS can not represent fuzzy data types such 
as fuzzy lines. The implementation of fuzzy regions is done in a raster data 
model. The boundary of a fuzzy region is stored in the vector data model. The 
real implementation for accommodating fuzzy spatial objects has not been 
fulfilled.   

(5) A composite method for generating fuzzy spatial objects has been proposed, 
which is essentially based on the maximum likelihood classification. Many 
other methods are available, such as the fuzzy neural network approach. The 
fuzzy neural network can be trained by sample data and possibly derive better 
inference rules. This method can also be adopted for calculating changes of 
fuzzy land cover objects. 

(6) The query methods are implemented based on ArcView GIS software. Since, 
as we mentioned, the real implementation of fuzzy spatial objects has not been 
done, the computing method for accessing fuzzy spatial objects is little 
discussed.  

(7) The utilization of fuzzy spatial objects has demonstrated their power. However, 
a systematic analysis should be done on how many types of functions we can 
generate based on fuzzy spatial objects.   

 
In short, the thesis provides a theoretic framework for modeling fuzzy spatial objects. 
More research should be done concerning the representation of fuzzy spatial objects at 
the data structure level. Practically, the thesis tackles some methods for generating fuzzy 
spatial objects. A GIS should be able to integrate different methods for generating fuzzy 
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spatial objects from the real world. Finally, fuzzy spatial object functionality should be 
systematically analyzed and provided in GIS.  
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Appendix  

Appendix 1. Forty-four (44) relations between two simple fuzzy regions by using 
the 3*3-intersection matrix (after Clementini and Di Felice 1996) 
Illustration Matrix Illustration Matrix Illustration Matrix 
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Appendix 2. One hundred and fifty-two (152) topological relations between two 
simple fuzzy regions in ),~( 2 CR  by using the 4*4-intersection matrix  
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Appendix 3. Seventy-seven (77) topological relations between two real simple fuzzy 
regions in fuzzy topological space 
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Samenvatting 

Op dit moment worden natuurlijke fenomenen door geografische informatie systemen 
gerepresenteerd als scherpe ruimtelijke objecten. In feite hebben veel natuurlijke 
fenomenen echter vage eigenschappen. Hun representatie in een scherpe vorm 
versimpelt aanzienlijk de manier waarop ze kunnen worden verwerkt. Deze 
vereenvoudiging kan de natuurlijke karakteristieken echter onvoldoende waarborgen en 
leidt tot verlies van informatie. Om natuurlijke fenomenen meer nauwkeurig te 
beschrijven zou de vaagheid van de objecten in beschouwing moeten worden betrokken 
en worden gepresenteerd door het GIS. Dit moet dan leiden tot betere resultaten en een 
beter begrip van de wereld om ons heen. 
 
Het centrale thema van dit proefschrift is het onderbrengen van vage ruimtelijke 
objecten in vanuit GIS. Verschillende onderwerpen worden bediscussieerd vanuit een 
theoretisch en een praktisch perspectief. Vage ruimtelijke objecten, alsmede de 
topologische relaties ertussen, worden gedefinieerd. Ze worden gemodelleerd, 
gegenereerd en gebruikt voor het modelleren van verandering in land bedekking. 
 
Een formele definitie van scherpe ruimtelijke objecten wordt afgeleid op basis van 
abstracte wiskunde, zoals verzamelingleer en topologie. Vage verzamelingleer en vage 
topologie zijn perfecte hulpmiddelen om vage ruimtelijke objecten theoretisch te 
definiëren, omdat vage verzamelingleer een natuurlijke uitbreiding is van de klassieke 
verzamelingleer en vage topologie gebaseerd is op vage verzamelingen. Met betrekking 
tot deze uitbreiding moeten verschillende eigenschappen die gelden voor scherpe 
verzamelingen worden heroverwogen voor vage verzamelingen. 
 
Het belangrijkste onderdeel van een vaag ruimtelijk object is zijn grens. Drie definities 
van vage grenzen worden opnieuw bekeken en één ervan is hierbij geselecteerd voor het 
definiëren van vage ruimtelijke objecten. Behalve de vage grens komen verschillende 
begrippen van vage ruimtelijke objecten aan de orde, zoals de kern, het inwendige, het 
randgebied, het inwendige van het randgebied en het complement van een vage 
verzameling in een vage topologische ruimte. De relaties tussen deze begrippen en het 
inwendige, de grens en het complement van een vage verzameling worden ten tonele 
gevoerd. De kern kan gezien worden als de scherpe deelverzameling van een vage 
verzameling en het grensgebied is een soort grens, die echter een fijnere structuur laat 
zien dan de grens van een vage verzameling in een vage topologische ruimte. Van al 
deze concepten wordt bewezen dat het topologische eigenschappen zijn van een vage 
topologische ruimte. 
 
Er wordt aangetoond dat de definitie van een enkelvoudig vaag gebied gebaseerd is op 
de bovengenoemde topologische eigenschappen. In dit proefschrift wordt het twee keer 
besproken. Allereerst wordt de definitie van een vaag gebied gegeven in een speciale 
topologische ruimte, de zogenaamde scherp-vage topologische ruimte. Deze heet zo 
omdat de meeste toplogische eigenschappen van vage verzamelingen dezelfde zijn als 
die we tegenkomen in een scherpe topologische ruimte. Een formele definitie van een 
enkelvoudig vaag gebied wordt voorgesteld op basis van de bespreking van 
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topologische eigenschappen, naast het inwendige, de grens en het complement van een 
vage verzameling in de algemene toplogische ruimte. Een enkelvoudig scherp gebied is 
een speciaal geval van een enkelvoudig vaag gebied. 
 
Fundamentele eigenschappen met betrekking tot vage ruimtelijke objecten betreffen de 
topologische relaties. Het probleem van de benadering via 9-doorsneden voor het 
identificeren van topologische relaties tussen vage ruimtelijke objecten wordt besproken. 
Om topologische relaties tussen vage ruimtelijke objecten af te leiden wordt deze 
benadering via 9-doorsneden verfijnd tot een benadering met 3*3-doorsneden in de 
scherpe topologische ruimte. Vervolgens wordt een benadering met een matrix van 4*4- 
doorsneden opgebouwd, waarbij gebruik gemaakt wordt van de topologische 
eigenschappen van vage verzamelingen. Een matrix van 5*5-doorsneden kan 
vervolgens worden geconstrueerd op basis van een bepaalde voorwaarde in de 
scherp-vage topologische ruimte. Deze matrices worden dan aangepast binnen de 
algemene vage topologische ruimte, gebaseerd op topologische eigenschappen die 
verschillen van het inwendige, de grens en het complement van 2 vage verzamelingen. 
Twee matrices van 3*3-doorsneden en één matrix van 4*4-doorsneden worden 
geïntroduceerd in de algemene topologische ruimte. De topologische relaties tussen 
enkelvoudige vage gebieden kunnen vervolgens worden geïdentificeerd op basis van 
topologische invariantie in de doorsneden van doorsnijdingsmatrices. Door gebruik te 
maken van lege en niet-lege topologische invariantie van de doorsnijdingsmatrices 
worden respectievelijk 44 en 152 relaties afgeleid tussen twee enkelvoudige vage 
gebieden. 
 
Het modelleren van vage ruimtelijke objecten moet niet alleen gedaan voor 
enkelvoudige vage gebieden, maar ook voor vage lijnen en vage punten. Een vage cel 
wordt geïntroduceerd om vage lijnen en vage punten te modelleren alsmede de relaties 
tussen vage ruimtelijke objecten. Een complex van vage cellen kan dan worden 
opgebouwd uit vage cellen. Een vaag gebied, een vage lijn en een vaag punt worden dan 
gedefinieerd op basis van deze structuur. De relaties tussen vage objecten worden 
vastgesteld. De structuur van een complex van vage cellen biedt een theoretisch kader 
omdat daarmee vage ruimtelijke objecten gemakkelijk kunnen worden gemodelleerd. 
 
Na het vaststellen van een theoretisch kader voor het modelleren van vage ruimtelijke 
objecten worden in dit proefschrift verschillende praktische aspecten besproken die 
relevant zijn bij het toepassen van vage ruimtelijke objecten. Het eerste probleem is hoe 
vage ruimtelijke objecten gegenereerd kunnen worden. Een samengestelde methode 
wordt geïntroduceerd om vage objecten voor land bedekking te genereren. Het bestaat 
uit verschillende fasen, vanaf het ontwerpen van lidmaatschapfuncties tot de 
classificatie en het verfijnen van lidmaatschapfuncties voor vage objecten voor land 
bedekking. 
 
Een ander praktisch probleem betreft het terugvinden van vage ruimtelijke objecten, 
vooral als dat moet gebeuren op basis van topologische relaties. In een traditioneel GIS 
worden de zoekoperaties gedefinieerd op basis van een relatief klein aantal topologische 
relaties. Er bestaan echter vele topologische relaties tussen vage ruimtelijke objecten. 
Om vage ruimtelijke gebieden op te vragen worden zoekoperatoren voorgesteld en 
geformaliseerd op basis van gebruikelijke operatoren in een traditioneel GIS. De 44 of 
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152 topologische relaties worden door middel van 4 verschillende methoden onder deze 
operatoren geclassificeerd. Deze methoden geven een betrekkelijk volledige 
verzameling voor het bevragen van vage ruimtelijke objecten om tegemoet te komen 
aan de vereisten van de verschillende toepassingen. 
 
Het derde praktische probleem betreft het gebruik van vage ruimtelijke objecten in 
realistische toepassingen. De dynamiek van land bedekkingen is een erg belangrijk 
onderwerp in China. Het accent ligt hierbij op het verkennen van de veranderingen. De 
stad Sanya, in het zuiden van China, is uitgezocht als een testgebied. Een vage 
redeneringmethode wordt voorgesteld om veranderingen in land bedekking te 
berekenen. Er wordt aangetoond dat met een vage representatie niet alleen betere 
resultaten worden geboekt voor het berekenen van de veranderingen in land bedekking 
maar ook de details van de veranderingen worden belicht. 
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